Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown

Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown

ID:81816785

大小:3.48 MB

页数:12页

时间:2023-07-21

上传者:U-14522
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第1页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第2页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第3页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第4页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第5页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第6页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第7页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第8页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第9页
Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown_第10页
资源描述:

《Modeling Enhanced Performances by Optical Nanostructures in Water-Splitting Photoelectrodes - Photoelectrodes et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCCArticleModelingEnhancedPerformancesbyOpticalNanostructuresinWater-SplittingPhotoelectrodesLucDriencourt,BenjaminGallinet,*CatherineE.Housecroft,SörenFricke,andEdwinC.Constable*CiteThis:J.Phys.Chem.C2021,125,7010−7021ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Materialnanostructuringandopticalphenomenaonananoscalesuchasplasmoniceffectsandlightscatteringhavebeenwidelystudiedforimprovingthesolar-to-hydrogenefficiencyofphotoelectrochemical(PEC)water-splittingelectrodes.Inthiswork,wereportamethodforanalyzingthecontributionsofopticaleffectsfromnanostructuresforenhancingthePECperformances.Electro-magneticsimulationsareperformedfortheprecisecalculationofgeneratedpowerdensityinasemiconductormaterial.Inaddition,thetransportandtransferofphotogeneratedchargestotheelectrolytearemodeledbyusingtheconservationofminoritycarriers.Thesurfacelossparameter,diffusionlength,anddopingdensityofthesemiconductormaterialaredeterminedbyfittingthemodeltoanincidentphotontocurrentefficiency(IPCE)curveexperimentallymeasuredonthebarereferencephotoelectrode.TheseparametersarethenusedtocomputetheIPCEspectraofthephotoelectrodeforwhichanopticalenhancementstrategyisused,suchasnanostructuringorplasmonics.Themethodisvalidatedusingpublishedexperimentaldata.ThecalculatedIPCEenhancementratiooriginatingfromopticaleffectsisinquantitativeagreementwithexperimentalobservationsforbothperiodicandrandomopticalstructures.ThemodelcanbeusedtostudyindetailthekeyenhancementmechanismsfortheIPCEfromopticalnanostructuresand,inparticular,discriminatebetweenopticalandnonoptical(e.g.,catalytic)enhancement.■INTRODUCTIONOpticaleffectshavealsobeeninvestigatedtoimprovetheSolarwatersplittingwithphotoelectrochemical(PEC)cellsperformanceofphotoelectrodes.Thin-filmphenomenahave10,11hasthepotentialofbeingacompetitivetechnologyforbeenexplored,forinstance,back-reflectinglayers.12−1516−18Downloadedvia103.238.105.33onMay14,2021at08:16:47(UTC).hydrogenproductioncomparedtothereformingoffossilPlasmonicnanoparticlesornanostructurescom-fuels.1Intensiveresearchisstillongoingtodevelophigh-binedwithawater-splittingsemiconductormaterialcanyieldperformance,inexpensivephotoelectrodesthatcanoperateforanincreasedphotocurrentwithrespecttothebarephoto-severalyears.MetaloxidesemiconductorsarepromisingelectrodeasaconsequenceofmodifiedlightabsorptioninsidecandidatesforpracticalPECwatersplitting,thankstotheirthesemiconductor.Moreover,plasmonichotcarriergen-Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.lowcostandinherentstabilityunderaqueousconditions.erationandsubsequenttransfertothesemiconductorhasbeenHowever,theyfaceseveralissuesthatlimittheirsolar-to-demonstratedasawayofusinglightwithlessenergythanthehydrogenefficiency.Ononehand,nometaloxidesemi-19−22bandgapofthesemiconductor.Includinglightscatterersconductorhasbeenfoundtomeetbothrequirementsofaninthephotoelectrode23,24canincreasetheopticalpathoftheenergybandgapclosetothetheoreticaloptimum(1.84eVforlightandbehelpfulforovercomingthehighabsorptiondepth2thetopabsorberinadualstackedtandemcell)andlowbulk/ofmanymetaloxides.Microstructuredandnanostructured3surfacerecombinations.Ontheotherhand,athinlayermorphologies25−29andhost−guestarchitectures30−35whereathicknessshouldbeusedtoachievedecentchargetransportthinsemiconductorlayerisdepositedonahighlymicro-becauseoftheshortminoritycarrierdiffusionlengthofmoststructuredornanostructuredconductiveguestscaffoldhave4,5metaloxides(e.g.,2−20nmforα-Fe2O3)resultinginpoorlightabsorptionasaconsequenceoftheindirectnatureofthebandgap.SeveralenhancementstrategieshavebeenReceived:December21,2020elaborated.Dopingofmetaloxides,eitherduringsynthesis6Revised:March5,2021orwithapost-treatment,7,8hasbeenreportedasanefficientPublished:March26,2021wayofimprovingtheelectricalproperties.Depositionofa9surfacecatalystsuchascobalt-phosphate(Co-Pi)resultsinacathodicshiftofthephotocurrentonsetpotential.©2021TheAuthors.PublishedbyAmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpcc.0c113427010J.Phys.Chem.C2021,125,7010−7021

1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.Sketchofann-typesemiconductorphotoelectrodeilluminatedfromtheelectrolytesideanddifferentopticaleffectsthatcanimprovethewater-splittingefficiency.Theinsetontherightillustratesthatseparationbetweenphotogeneratedelectronsandholescanbeachievedonlyinthespacechargeregion(SCR)orclosetoitwithrespecttotheminoritycarrierdiffusionlength.beenwidelystudied.Suchstructuresenableadditionallightnotconsiderthephotogeneratedchargeseparation,transport,absorptiontotakeplaceclosetothesemiconductor/electrolyteandtransfertotheelectrolyte.interfaceduetotheincreasedsurfaceareawithrespecttoaflatInthiswork,wecombinenear-fieldelectromagneticconfiguration.simulationswithachargetransportmodeltostudyopticalModelingapproachesareimportantforunderstandingtheenhancementatthenanoscaleinwater-splittingphoto-limitationsassociatedwiththeobservedwater-splittingelectrodes.Preciseopticalmodelingofthephotoelectrodeisperformancesandinvestigatingthepotentialofdifferentperformed,whereasthetransportandtransferofphoto-35,3637enhancementstrategies.GaudyandHaussenerdemon-generatedchargesaretreatedsemianalyticallybyconsideringstratedafastanalysisandoptimizationmethodpartiallybasedtheminoritycarriers.Thepresentedmethodenablestoanalyze38ontheworkofWilson.Itmodelstheincidentphotontothecontributionofvariousopticaleffectsbyconsideringthecurrentefficiency(IPCE)andcanbeusedtoextracttheentirewater-splittingprocess.Inparticular,opticalandoptical,bulk,andsurfacelossesofaphotoelectrodefromannonopticalcontributionscanbediscriminatedinanobservedIPCEmeasurement.Withthistool,theauthorscouldIPCEenhancement.Insightsintothemainmechanismsofinvestigateforseveralmaterialsifnanostructuringisasuitableopticalenhancementareunveiled,suchasitsresonantorwayofimprovingtheperformances.Themodelassumesaflatnonresonantnature,thelocationofelectromagneticfieldhotstructureoftheelectrodeaswellasauniformlightabsorptionspotscontributingtophotocurrentgeneration,theinfluenceofinthematerialdescribedbytheBeer−Lambertlaw,whichnanometricgeometricalfeaturesontheefficiency.Itismakesitunsuitableforstudyingheterojunctionsandopticalapplicabletoanynear-fieldelectromagneticcalculationeffectswheretheabsorptionprofilecannotbeconsideredasmethod,thusallowingausertochoosethemostappropriate10exponentiallydecaying(e.g.,plasmonics).Dotanetal.andefficientapproachtothesystemathand.investigatedtheoreticallyandexperimentallyopticalbackInthefollowing,thecalculationofIPCEincludingopticalreflectorstoenhancethephotocurrentofultrathinhematitenear-fieldenhancementeffectsandachargetransportmodelis(α-Fe2O3)photoanodes.Asimplifiedmodelwasusedtofirstdescribed.Anexperimentalvalidationofthewholeaccountfortheminoritycarrier’sseparation,transport,andmethodisthenperformedbycomparingtheopticalenhance-transfertotheelectrolyte.Moreover,byconsideringanideallymentcalculatedwiththemodeltopublisheddata.Foreachreflectivesubstrate,theycouldobtainananalyticalexpressioncase,theopticalmodelandtheopticalpropertiesoftheforthephotonfluxinthehematitelayer.Encinaandmaterialsarefirstvalidatedbycomparisonwithmeasurements.39CoronadostudiedplasmoniceffectsinisolatedhybridThestudiedgeometriesinvolveseveralsemiconductorhematite/metal(metal=Al,Ag,Au)nanocylinderswithmaterials(α-Fe2O3andBiVO4),differenttypesofopticalnear-fieldsimulations.Theabsorptionefficiencyintheelements(periodicallydistributedhostscaffoldandrandomlyhematiteregionwassimulatedwithdiscretedipoleapprox-distributednanoparticles),anddifferentelectromagneticimation.Althoughthepresentedmethodprovidedtheoreticalsimulationmethods(rigorouscoupledwaveanalysis,RCWA,insightsintotheimportantparameterscontributingtotheandsurfaceintegralequations,SIE).Finally,wediscusshowplasmonicenhancement,thestudywaspurelyopticalanddidthetypesofopticaleffectsresponsiblefortheobserved7011https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleenhancementcanbeidentifiedfromnear-fieldstudiesandL−d()/xLU*=()xeIPCEenhancementspectra.LDS+/(3)■withd(x)beingthedistancebetweenxandtheedgeoftheMODELDESCRIPTIONSCRregion,Sisaboundaryparameter(fullderivationintheThemethodforcalculatingtheIPCE(orexternalquantumSupportingInformation),andD=μVthistheEinsteinefficiency,EQE)isdescribedinthenextsection.First,thediffusioncoefficientwithμbeingthemobilityoftheminoritygeneratedpowerdensityinthesemiconductormaterialischargecarrier.calculatedwithnear-fieldopticalsimulationsandcombinedTheparameterζineq2expressestheratioofchargeswithachargetransportmodeltocomputetheEQE.InageneratedintheSCRthatarereachingthesemiconductor/secondstep,amethodtoanalyzeopticalenhancementin37electrolyteinterfacenanostructuredelectrodesispresented.OpticalSimulations.Figure1showsdifferenttypesofL2ϕSCRopticaleffectsthathavebeenreportedtoimprovetheζ=22performancesofwater-splittingphotoelectrodes.11,15,23,31LWϕSCR+SCRVth(4)4041EitherSIEwithperiodicboundaryconditionsorRCWAwhereListheminoritycarrierdiffusionlength,Vth=kBT/qisisusedtocalculatethelightintensitydistributioninthethethermalpotential,andϕsc=Va−Vfbisthepotentialdropsemiconductorregion.SIEisknowntobehighlyrobustforacrosstheSCR,withVabeingtheappliedvoltageandVfbtheplasmonicnear-fieldcalculations,whereasRCWAismore42flatbandpotentialofthematerial.adaptedtolargeperiodicdielectricstructures.Throughout45WSCRisthethicknessoftheSCRdefinedasthiswork,thecalculationsaremadeinaunitcellcontainingasinglefeatureinordertoreducecomputationalcosts.2εε0rHowever,thepresentedmodelcanbereadilyadaptedtoWSCR=−()ϕSCRVthqNd/a(5)fastersimulationtechniquesthatenable“supercells”witha43largenumberoffeatures,suchasthefastmultipolemethod.whereε0isthevacuumpermittivity,εristherelativeTheelectricfieldintensityiscalculatedinasetofrandomlypermittivityofthematerial,andNd/aisthedensityofgeneratedpointsinsidethesemiconductorregion.Thedonors/acceptors.44generatedpowerdensityateverypointisthengivenbyIntheworkofGaudyandHaussener,37theBeer−Lambertc2lawwasusedtocomputeG(x,λ).ThismodelwasthenG(,)xEλ={}πεIm0ε()(,)λ||xλvalidatedonpublisheddataforseveralsemiconductorthinλ(1)filmsincludingp-typesilicon,bycomparingthedeterminedwherecisthespeedoflightinvacuum,λisthevacuumdiffusionlengthwiththereportedvalues.Inthiswork,wewavelength,εisthevacuumpermittivity,ε=(n+ik)2isthe0studythecontributionofopticalnanostructuresbyperformingcomplexpermittivityofthesemiconductormaterial,andanumericalcalculationofU*(x)andG(x,λ)inasetofE(x,λ)istheelectricfieldatpositionxandwavelengthλ.randomlygeneratedintegrationpoints.Theintegralsofeq2Equation1willthenbeusedinthenextsectiontocomputearethencomputednumericallyfromthenear-fielddistributiontheEQEinthesemiconductormaterialwithandwithoutopticalnanostructuring.iNSCRcπε0jjjjVSCR2IPCEDeterminationfromOpticalSimulations.TheEQE()Nλ={Im()ελ}Rsjjζ∑||Ex(,)iλλP0kNSCRi=1semiconductorvolumecanbeseparatedintoaSCRwherebandbendingexistsduetothepresenceofasemiconductor/VNBulkyzzelectrolytejunction(upwardbendingforn-typesemiconduc-+*Bulk∑U()(,)xEx|λ|2zzNiizztorsanddownwardbendingforp-typesemiconductors)andaBulki=1{(6)45bulkregionwherenobandbendingexists(Figure1).Thestudyofchargeseparation,transport,andtransferisbasedonwhereNSCRandNBulkarethenumberofintegrationpointsinthefindingsofWilson38andGaudyandHaussener.37theSCRandbulkregion,respectively.ThevaluesofRs,L,andConsideringthattheperformanceislimitedonlybyminorityNd/ainthisequationarechosenaccordingtodirectorindirect37characterization.Thesizeparametersofthephotoelectrodecarriers,theEQEatawavelengthλcanbeexpressedasandtheopticalconstantsofthematerialsaredeterminedfromRijjyzzapriorcharacterizationoftheelectrodestructureandasEQE()λζλ=+jj∫∫GxUGx(,)dxx*()(,)dxλzzcomparisonofthesimulatedopticalproperties(transmission,P0kVVSCRBulk{absorption,absorbance,etc.)withmeasurements.TheEQEof(2)aphotoelectrodeincludingopticalnanostructurescanthenbektcalculatedandcomparedtothebarephotoelectrode.ThiswillwhereP0istheincidentilluminationpower,R=skktr+bediscussedindetailinthesection“OpticalEnhancementaccountsforthesurfacerecombinationlosses,withktandkrCalculation”.beingtherateconstantsforthechargetransferandthesurfaceOurchargetransportmodelconsidersthatonlytherecombination,respectively.G(x,λ)isthepowerdensityoftheelectron/holepairsgeneratedintheSCRorclosetothegeneratedelectron−holepairsatpositionx.VSCRandVBulkareSCRwithrespecttotheminoritycarrierdiffusionlengththevolumeoftheSCRandthebulk,respectively.contributetothecalculatedEQE(Figure1).ThisaspectisaU*(x)istheprobabilitythataminoritycarriergeneratedinkeyfactortooptimizeopticalcontributionstothephoto-thebulkatpositionxreachestheSCR.Itsexpressionisderivedcatalyticperformancesandisnotconsideredwhenonlytheanalyticallyfromtheminoritycarrierconservationequationinoveralllightabsorptioninthesemiconductorregionisstudied,ref38andisgivenbyasinref39.7012https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.Flowchartoftheprocedureforcomputingtheopticalenhancementbetweenahybridphotoelectrodeincludingopticalelementsandabarephotoelectrode.ThestepsinreddetermineRS,L,andNd/afromanexperimentalEQEcurvemeasuredonthebarephotoelectrode.Thesestepsdonotneedtobeperformediftheseparametersarealreadyknownfortheconsideredelectrode.14,48Scope.Majoritycarriertransportandtransferarenottakenelectrolyte,suchaswhenplasmonicnanoparticlesareused.intoaccount;therefore,thedescriptiongivenbythemodelisInthesecases,theEQEgivenbythemodelcanbecomparednotaccurateiftheseparametersarethelimitingperformancewithexperimentalmeasurementswherethechargetransferfactors.Minoritycarrierrecombinationsatthebackcontactofefficiencycanbeassumedtobe100%andreducedsurfacethephotoelectrode(e.g.,duetodefectstateattheFTO/lossesduetotheopticalelementsdonotplayarole.semiconductorinterface)arealsonotconsidered.Experimen-Depositinganadditionalcatalystonthesurfaceofthetally,theycanbedrasticallyreducedbydepositingablockingphotoelectrode(e.g.,Co-Pi)orusinganelectrolytethatlayerforminoritycarriersbetweenthesubstrateandthecontainsasacrificialsubstance(hole/electronscavengerfor4647semiconductor(suchasWO3orSnO2).Backcontactphotoanodes/photocathodes)canhelpachievingsucharecombinationsarealsonegligiblewhentheelectrodeisconfiguration.Inahole/electronscavenger,theassumptionilluminatedfromtheelectrolyteside(frontillumination),iftheof100%chargetransferefficiencyisonlyvalidathighapplied49,50minoritycarrierdiffusionlengthissmallerthanthesemi-potentialsformetaloxideelectrodes.Fittingthechargeconductorthickness.transferparameterRs(section“OpticalEnhancementCalcu-Itisassumedthattheadditionofopticalelementsmodifieslation”)canindicateiftheassumptionisvalidornot.TheonlythelightabsorptionprofileinthesemiconductorandhastechniqueofcombiningEQEmeasurementsinelectrolytesnoeffectonthechargeseparation,chargetransport,andwithandwithoutholescavengershasalreadybeenreportedfortransferefficiency.OpticalenhancementisdefinedastheexperimentallydiscriminatingthecatalyticandopticalimprovementofPECperformances(EQE,photocurrent)duecontributionscomingfromtheadditionofmetallicnano-13,24,51toopticaleffects.Anyphotocurrentor/andEQEenhancementparticles.However,modifiedchargeseparationanddescribedwithourmodelisanopticalenhancement.transportinthehybridstructurecannotbedifferentiatedTherefore,theoverallpredictedenhancementcanbedifferentfrompurelyopticalenhancement.fromtheexperimentallyobservedone.ReducedsurfacelossesWeassumedineq6that100%oftheabsorbedphotonscanbeexpectedwhentheaddedopticalelementshaveagenerateusefulchargecarriersforwateroxidation/reduction.surfacecatalyticeffect(e.g.,whentheyaremadeofpreciousHowever,ithasbeenrecentlyreportedforsomematerialsthat11,15metal)orareabletolocallyheatthesemiconductororthenotallopticaltransitionscontributingtotheabsorption7013https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle52−54spectrumgeneratemobilechargecarriers.Toaccountforwhichanopticalenhancementstrategyisused)areperformedthisphenomenon,eq6canbemultipliedwiththephoto-first,fromwhichthepowerdensityofthephotogeneratedgenerationyieldspectrumifitisknownforthematerialelectron/holepairsinthesemiconductorlayeriscalculated(eqconsidered.Theminoritycarriermobilityμ(expressionofthe1).AsinputforcalculationofEQE,theparametersVfb,Eg,andEinsteindiffusioncoefficientineq3)intheconsideredεrshouldbeprovided(TableS1)aswellasthesurfacesemiconductorisnotrequiredtobeknowniftheappliedrecombinationparametershouldbeprovidedaswellasthevoltageVaissuchthattheSCRpotentialislargerthan0.23surfacerecombinationparameterRS,theminoritycarrier37V.ThisisthecaseforallexamplesstudiedinthenextdiffusionlengthL,andthedonors/acceptorsdopingdensitysection;therefore,aconstantvalueofμwasused.TheSCRNd/a.Thesethreelastparameterscanbedeterminedbyfittingpotentialisassumedtobeunperturbedbytheincidentlight,eq6toanexperimentalEQEcurvemeasuredonthebareandauniformdonors/acceptorsconcentrationisassumedinphotoelectrodesuchthattheoptimalvaluesmaximizethethesemiconductor.Finally,themodeldoesnotaccountforthecoefficientR215,19,21plasmonichotelectroninjectionmechanismandcanbe2∑|−EQE()λλEQE(;RLN,,)|thereforecombinedwiththetheoreticalframeworksdeveloped2iexpiiNSd/a55R=−12forhotelectrongenerationforanalyzingplasmonicEQE∑i|−EQE()expλiEQEexp|enhancementanddiscriminatingbetweenhotelectron(9)injectionandnear-fieldeffects.OpticalModelingofMaterialsandGeometry.ThewhereEQEexp(λi)istheexperimentallymeasuredEQEatopticalmodelmustbecomparedtoopticalmeasurementswavelengthλi,EQENisgivenbyeq6andEQEexpistheaveragebeforeconsideringtheoptoelectronicpropertiesofthesystem.valueoftheexperimentalEQEfromthelowestmeasurementThisvalidationcanbeperformedinvariousways,dependingwavelengthλ0tothewavelengthcorrespondingtothebandontheopticalenhancementstrategychosen.Inthiswork,wegapofthesemiconductor.Ifoneorseveraloftheseparameterswillinvestigatetwotypeofstrategies:host−guestnano-arealreadyknown,thisprocedurecanbeperformedwiththestructuringofthesubstrateandadditionofnanoparticles.Theunknownparametersonly.ThevaluesofRS,L,andNd/aareparametersofthesimulatedgeometryandtheopticalassumedtobeidenticalforthebareandhybridphoto-constantsofthematerialsconsideredshouldbechosentoelectrodes.Forallsimulations,thevalueofholemobilityμandrealisticallydescribethefabricatedsample.Thisneedstobechargetransferrateconstantktwereassumedasinref37tobeinvestigatedthroughacarefulcharacterizationofthefabricated1cm2V−1s−1and10−2cms−1,respectively.TheEQEspectrastructureandcomparisonofthesimulatedopticalpropertiesforbareandhybridphotoelectrodesarecalculatedwitheq6(transmission,absorption,absorbance...)withexperimentalfromtheinputparametersandthevaluesof|E(x)|inthemeasurements.Thesimulatedgeometryshouldincludethesemiconductorobtainedwithelectromagneticsimulations.Theinterfacesthatareopticallynotnegligible(e.g.,semi-photocurrentenhancementbetweenthehybridandbareconductor/substrate).TheporosityofthesemiconductorsampleiscalculatedfromtheEQEspectralayercanbeconsideredopticallyusinganeffectivemediumapproximationforthepermittivityofthesemiconductor.56J∫EQE()AM1.5G()d2λλ·λh=Inthesection“Ti/Fe2O3FilmontheNanostructuredJb∫EQE()AM1.5G()d1λλ·λ(10)Substrate”,thedesignedgeometryisvalidatedbycomparingthemodelwiththemeasuredabsorptionspectrawhereAM1.5G(λ)isthesolarspectrum,EQE2(λ)istheEQEA()1λλ=−RT()−()λ(7)spectrumofthehybridsample,andEQE1(λ)istheEQEspectrumofthebaresample.PhotocurrentenhancementbeingwhereR(λ)andT(λ)arethereflectanceandtransmittancearesultofintegrationoftheentirespectrum,apropermodelspectra,respectively.validationcanbefirstsoughtthroughcomparisonwithEQEInthesection“BiVO4ElectrodewithAg@SiO2Nano-measurement.particles”,thenanoparticlesarenotconsideredperfectlyFinally,thegeometry,material,andrelativepositionofthemonodispersedandweusealinearcombinationofseveralopticalelementsandsemiconductorlayerinthehybridsystemnanoparticlesizesintheEQEcalculations.Themeasuredcanbeoptimizedthroughseveraliterations.distributionisusedtoselectthesizes,andweimposethatthemostoccurringvaluehasthehighestweightinthedistribution.■RESULTSANDDISCUSSIONThecoefficientsaredeterminedbyfittingthemeasuredInthefollowing,themodelisappliedtoexperimentallyabsorbancewithalinearcombinationofextinctionefficiencyfabricatedphotoelectrodespreviouslyreportedwhereopticalspectra,definedaseffectsfromnanostructureswereclaimedtobetheoriginofCCabs()λλ+sca()theobservedEQEenhancement.TheinvestigatedsystemsQext()λ=2involvetwodifferentmetaloxidematerials(hematiteandπR(8)bismuthvanadate),differentstrategiesforopticalenhancementwhereCabs(λ)andCsca(λ)aretheabsorptionandscattering(periodicnanostructuringandrandomlydistributedmetalliccrosssections,respectively,andπR2isthephysicalcrossnanoparticles),anddifferentopticalsimulationmethods(SIEsectionofthenanoparticle.andRCWA)inordertodemonstratethebroadapplicabilityofOpticalEnhancementCalculation.Asemi-analyticalthemethod.SimulateddataarecomparedtoreportedmethodforthecalculationofEQEhasbeenestablished.Wemeasurementstoconfirmthevalidityofthemodel.Wereportnowonaproceduretocomputetheopticalenhance-illustratethroughtheseexamplesthatthismodelallowsustomentbynanostructures(Figure2).Opticalsimulationsfortheclearlyandnonambiguouslyidentifytheoriginofopticalbarephotoelectrode(referencesamplewithnospecificopticalenhancement.Inparticular,thecontributionofplasmonenhancementstrategy)andthehybridphotoelectrode(forresonancesiscomparedtononresonantscattering.7014https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure3.(a)SEMimageofafabricatedsamplewhereTi/Fe2O3wasdepositedonananostructuredFTOscaffold.Reprinted(adapted)withpermissionfromref57.Copyright2014AmericanChemicalSociety.(b)Calculatedabsorbanceofa100nmhematitelayerdepositedonFTO-coatedglass(plaincurve),comparedwithmeasurementsfromref57(dashedcurve).(c)Schemeoftheperiodicdesignusedforsimulationsofthenanostructuredsamplewitha100nmhematitefilm.(d)Absorptionspectracalculatedfortheflatandnanostructuredcases,comparedwithmeasurementsfromref57.Ti/Fe2O3FilmontheNanostructuredSubstrate.WeresonanceintheFTOlayer.Itsspectralpositionvarieswithconsiderfirstahost−gueststructurewhereathinfilmofTi-theangleofincidence(FigureS1a)anditdisappearswhendopedhematite(Ti/Fe2O3)isdepositedonananostructuredFTOisreplacedbyplatinum(FigureS1b).Theroughnessof57FTOscaffold.Qiuetal.demonstratedanincreasedEQEandthedepositedfilms,whichisnotconsideredinthemodeledphotocurrentforsuchananostructurecomparedtotheplanargeometry,couldexplainthatitisnotobservedinthemeasuredcase.Thescaffoldwasmadeofnanopillarsarrangedinaspectrum.periodicsquarepattern,andtheelectrodewasilluminatedInthenextstep,theparametersNd,L,andRsoftheTi/fromtheelectrolyteside(frontillumination).TheEQEandFe2O3filmwerededucedbyfittingthesimulatedEQEforthe57photocurrentweremeasuredbyQiuetal.in1MNaOHplanarconfigurationtotheexperimentallymeasuredcurveinaqueouselectrolytewithoutasacrificialholescavenger.the1MNaOHaqueouselectrolyte.ItwasrecentlyshownthatTherefore,ouranalysiswillhelptodiscriminatebetweennotallopticaltransitionsinhematiteareabletogenerateopticalandnonopticalenhancement.Weperformedtheusefulchargecarriersforwateroxidation.52,53ToaccountforopticalsimulationsofthesestructureswithRCWA.Thesizethat,eq6wasmultipliedbythewavelength-dependentparametersusedtodesignthesimulatedgeometrywerephotogenerationyieldofhematiteexperimentallymeasuredextractedfromtheSEMimagesshowninref57(devicewith53bySegevetal.(FigureS2).Thefittingprocedureforthe1000nmperiodshowninFigure3a).ThethicknessoftheTi/2planar(bare)configurationgaveR=0.97(eq9).ThevalueofFe2O3waschosentobe100nmbycalculatingtheabsorbance19−3L,Nd,andRsare4.1nm,2.16×10cm,and0.75,ofalayerdepositedonFTO-coatedglassandcomparingwithrespectively.Thediffusionlengthfoundiswithinthereportedthemeasurementsfromref57(Figure3b).Theoptical4,5constantsofhematiteweretakenfromref53,andtheopticaldataforα-Fe2O3.However,thedonordensityNdishigher61,62thanthepublishedvaluesforpurehematite,andthiscanconstantsofFTOandglassweretakenfromref58.The57beexplainedbythehighTi-doping(Ti/Feratioof3:35).simulatedgeometryisshowninFigure3c.TheopticalconstantsofAlO,Ti,andPtweretakenfromrefs,59,60,53SampleswithalargeTifractionwerereportedtohaveahigher2362respectively.Structureshavingperiodsof1000and1500nmdonorconcentrationthantheundopedmaterial.wereinvestigated.InagreementwiththeSEMimagesshownThesimulatedEQEforthenanostructured(hybrid)samplebyQiuetal.,57theheightoftheFTOpillarswassetto110%ofwith1000nmperiod(Figure4a)isinoverallgoodspectraltheperiodandtheirdiameterwassetto40%oftheperiod.andquantitativeagreementwiththemeasureddatafromrefThecalculatedabsorptionspectraoftheflatandnano-57.ThemodelpredictstheEQEtobeslightlyhigherthanthestructuredgeometrywith1000nmperiod(Figure3d)agreeexperimentaloneintherange360−430nmandabitlowerinreasonablywellwiththemeasurementsfromref57.Intheinterval450−530nm.Thismismatchcouldoriginatefromparticular,theopticalmodelshowscorrectlythatthethedeviationintheabsorptionspectrumfortheflatnanostructuredsamplehasalmost100%absorptionintheconfiguration(Figure3d)andalsofromthedifferencebetweenwholevisiblerange.Thepeakat580nminthesimulatedthephotogenerationyieldspectraofpurehematiteandTi/spectrumfortheflatconfigurationoriginatesfromathin-filmFe2O3.TheEQEspectrainref57weremeasuredfrom360nm7015https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleBiVO4ElectrodewithAg@SiO2Nanoparticles.Intheprevioussection,periodicnanostructuringhasbeenstudiedasanexample.Now,inordertoshowthebroadapplicabilityof24themethod,weconsiderplasmonicnanoparticles.Abdietal.havereportedthattheEQEofa∼100nmthickBiVO4photoelectrodecouldbeincreasedbyaddingAg@SiO2nanoparticlesatthesurfaceofthesemiconductor,intheconfigurationwheretheelectrodeisilluminatedfromthesubstrateside(backillumination).TheEQEenhancementratiobetweenthesampleswithandwithoutAg@SiO2Figure4.(a)SimulatedEQEofthestructurewith100nmhematitenanoparticleswasfoundtobemuchhigherinapurebufferdepositedonplanarandnanostructuredsubstrates,comparedwiththaninanelectrolytecontaininganadditionalholescavenger,57theexperimentalresultsobtainedbyQiuetal.ThesimulatedcurvewhichsuggeststhatthecontributionoftheAg@SiO2fortheplanarconfigurationrepresentsthebestfittothemeasurednanoparticlesisnotonlyoptical.Measurementswithandata.ThesimulatedEQEforthestructurewith1500nmperiodisadditionalholescavengerelectrolytewerethereforeusedforshowninFigureS3.(b)Photocurrentenhancementbetweenthecomparisonwithourmodelwhichstudiesopticalenhance-nanostructuredandflatsamples(calculatedusingeq10)comparedtotheexperimentalvaluesextractedfromphotocurrentmeasurementsinment.Theopticalpropertiesofthesestructureswereref57.calculatedwithSIEsimulations.Aunitcellofthesimulatedgeometryandsketchesofthefabricatedsamplesareshowninwhereastheabsorptionandabsorbancespectra(Figure3b,d)Figure5a−c.TheSnO2underlayerservesasaholeblocking47areshownonlyfrom400nm.layerandpreventsholerecombinationsatthebackcontact.Figure4bshowsthephotocurrentenhancementbetweentheElectrontransportisknownasalimitingfactorofperform-nanostructured(hybrid)andplanar(bare)samples.AveryancesinBiVO4,butthiswasspecificallyidentifiedforthickergoodagreementwithenhancementobtainedfromphoto-BiVO4filmsthaninthisexample(evidencedfrom200nmincurrentmeasurementwasobtainedforthesamplewith1000ref46).Inaddition,theelectrodeisilluminatedfromthebacknmperiod(2.3/2.0formeasurement/simulations),whereasaside,whichresultsinmostelectronsbeinggeneratedclosetoperfectagreementwasobtainedforthesamplewith1500nmthebackcontact.Thisjustifiestheapplicabilityofourmodelperiod.Thissuggeststhatthenanostructuredscaffolddoesnotwhichdoesnotconsidermajoritycarriertransportandhaveaneffectinimprovingthechargetransferefficiency,holerecombinationsattheback-contact.Thechosenperiodanddiffusionlength,orSCRsizebutcontributesonlythroughroughness(modeledinaperiodicway)werechosentomatchopticaleffects.Asaconclusion,ourmethodshowedcorrectlyrealisticallytheAFMdatashowninref24.thatthePECperformancesofthestructurewith1000nmTheexactBiVO4filmthicknessandthedimensionsoftheperiodishigherthantheonewith1500nmperiodandnanoparticleswerechosenbycomparingouropticalmodelto24providedaquantitativeagreementwithEQEandphotocurrentthemeasureddatabyAbdietal.Theabsorbanceofthebaremeasurementsfromref57.structure(withoutnanoparticles)wasfirstcalculated(FigureFigure5.(a)Schemeofthesimulatedunitcellforthehybridsample.(b,c)SchemeofthebareBiVO4sample(b)andthehybridsamplecontainingAg@SiO2nanoparticles(c),reproducedwithpermissionfromref24.Copyright2014RoyalSocietyofChemistry.(d)CalculatedabsorbanceofthebaresamplefordifferentBiVO4filmthicknessesandcomparisonwithmeasurementsfromref24(e)ExtinctionefficiencyspectraofAg@SiO2nanoparticlesinwaterwithashellthicknessof10nm.(f)ComparisonofabsorbancecalculatedasalinearcombinationofthethreespectraofFigure5e(plainredcurve)withthemeasuredabsorbancefromref24(dashedcurve).7016https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

7TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle245d).TheopticalconstantsofBiVO4weretakenfromref63,workofAbdietal.ThephotocurrentenhancementwasandtheopticalconstantsofSnO2,FTO,andglassweretakencalculatedwitheq10.Thefittingprocedureforthebarefromref58.Themeasuredabsorbancewaswellreproducedsamplewasperformedonlyintheinterval400−540nm.whena57nmBiVO4filmwassimulated,especiallyintheIndeedqualityofthefitwaspoorerwhenthewholerangerange380−450nmwhereBiVO4hasahighabsorption.This350−540nmwasconsidered(FigureS5).ItshouldbevalueofthethicknessisrealisticwithrespecttotheAFMmentionedthatexperimentalerrorsarehigherintheUVmeasurementsshowninref24.Thesizeofthesilverspectralrange,wheresolarlightandartificiallightsourcesusednanoparticleswasdeterminedbyassumingaconstantshellforEQEmeasurementsirradiatelessthaninthevisibleregion.thicknessof10nmandusingthemethoddescribedintheTherefore,performingthefittingprocedureintheintervalsection“OpticalModelingofMaterialsandGeometry”.The400−540nmhasasmallimpactonthecalculatedphoto-sizedistributionofthenanoparticlesreportedinref24wascurrent.Theentirerange350−540nmwasconsideredforused,withtheconstraintthatthemostoccurringsize(55nm)calculatingthephotocurrentenhancement,buttheEQEhasthehighestweightinthelinearcombination.Theopticalspectrausedisthebestfitintheinterval400−540nm.Aconstantsofsilverweretakenfromref64.Itwasfoundthattheweightedaveragebetweenthecurvesobtainedwith35,55,andcombinationof35,55,and65nmcoresizes(Figure5e)65nmcorenanoparticleswasperformedtocalculatetheEQEreproducesreasonablythemeasuredabsorbancefromref24ofthehybridsamples,usingthecoefficientsfoundinFigure5f(Figure5f).Thenarrowerpeakcouldbeduetothenonperfect(giveninFigureS4).Theaveragefillingfactoris31%,whichsphericalshapeofthenanoparticlesinreality.AcomparisonmatchesrealisticallywiththeSEMimagesofthefabricatedwiththesizedistributionmeasuredbyAbdietal.24isshownin24samplesshownintheworkofAbdietal.TheEQEcurvesforFigureS4.thesinglenanoparticlesizesareshowninFigureS6.TheparametersNd,L,andRsweredeterminedbyfittingtheFirst,itcanbeseenqualitativelythatthepositivecalculatedEQEforthebareBiVO4electrodetothecontributionofAg@SiO2nanoparticlestothePECperform-experimentalcurveintheholescavengerelectrolyte.Theancesiswellreproducedbythemodel.Thestructureincludingfittingprocedurewasperformedforthethreefilmthicknessesa57nmfilmthicknessgivesanoveralllowerEQEthanthatweretestedinFigure5d,andtheoptimizedparametersexperimentally,exceptintherange470−550nmwhichareshowninTable1.Itcanbeseenthatforallthreevaluesacontributeslesstothephotocurrent.However,thecalculatedphotocurrentenhancementissimilartotheexperimentalvalueTable1.DeterminedMaterialParameterforDifferentFilmcalculatedfromphotocurrentmeasurements(1.26/1.15forThicknessesmeasurements/simulations).ThereisanimportantdifferencebetweenthephotocurrentenhancementsderivedfromL[nm]N[cm−3]RR2DSmeasuredEQEspectra(1.39)andphotocurrent(1.26),45nmBiVO33.22.5×10180.980.964whichindicatesthatthedifferencebetweenmodeland57nmBiVO13.52.7×101810.954measurementsisintherangeofmeasurementuncertainties.80nmBiVO13.11.4×10180.980.914WhentheBiVO4filmthicknessisdecreasedto50nm,thesimulatedEQEforthehybridsamplematchesrelativelywellreasonablefittingqualitycanbeachieved(R2valuesfrom0.91theexperimentalobservations.Finally,boththesimulatedEQEto0.96).However,thevalueoftheoptimizedparametersandthephotocurrentenhancementarehigherthanthediffers.Asthe57nmBiVO4filmbestreproducesthemeasuredexperimentaldatawhena45nmfilmisconsidered.Ingeneral,absorbance,theoptimizedvalueofNd,L,andRscanbetrustedtheseresultsshowthatthepredictedenhancementcanbeonlyinthiscasetomatchthepropertiesofthefabricatedhigher,similar,orlowerthantheexperimentalobservationsBiVO4,showingtheimportanceofapriorvalidationofthewhenasmallvariationintheBiVO4thicknessisconsideredphotoelectrodeopticalproperties.(12nmdifferencebetweenthethinnestandthethickestThefittedEQEforthebaresample,simulatedEQEfortheconfiguration).ThiscouldpossiblybeduetoaslightlyhybridsampleandphotocurrentenhancementareshownindifferentBiVO4thicknessbetweenthehybridandbaresamplesFigure6andcomparedwithPECmeasurementsfromtheortosomethicknessvariationacrosssamplescomingfromtheFigure6.(a)BestEQEfitforthebaresample,fordifferentBiVO4filmthicknesses.(b)SimulatedEQEsforthehybridsample,comparedtothe24measureddataintheholescavengerelectrolytefromAbdietal.Theywerecalculatedasaweightedaverageofthecurvescorrespondingtonanoparticleswith35,55,and65nmcore,usingthesamecoefficientsasinFigure5f.(c)Photocurrentenhancementbetweenthehybridandbaresamples(calculatedusingeq10)fordifferentBiVO4filmthicknessesandcomparisonwiththeexperimentalvaluecalculatedfromthemeasuredphotocurrentintheholescavengerelectrolyte(dashedcurve)inref24.7017https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

8TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle65depositionmethod(spraypyrolysis).Asaconclusion,theplasmonresonanceofAg@SiO2nanoparticlesplacedattheresultsgivenbyourmodelagreequantitativelywithbothEQEinterfacebetweenwaterandBiVO4.andphotocurrentmeasurementswithinexperimentaluncer-Wenowanalyzetheoriginoftheopticalenhancement.Thetainties.Thisisaremarkableresultgiventhatweuseperiodicplasmonresonanceof55and65nmcorenanoparticlesisataboundaryconditionstodescribeasystemofrandomlylongerwavelengthcomparedtotheabsorptionmaximumofdistributednanoparticles.BiVO4,whereasthepeakfor35nmnanoparticlesmatches.Figure7ashowstheEQEenhancementspectrumfor50nmInterestingly,55and65nmnanoparticlesyieldahigherBiVO4thicknessresultingfromsimulationsandcomparisonenhancementinthehighabsorptionregionofBiVO4,whichletusthinkthatbothresonant(plasmonic)andnonresonantscatteringcontributetotheenhancement.Indeed,thefieldintensityintheBiVO4layerislowerinFigure7bthanin7c,d,asaresultoftheinteractionbetweenlightandnanoparticlesoff-resonance.Inordertostudythecontributionoftheresonantscatteringoriginatingfromplasmonicpropertieswithrespecttonon-resonantscattering,structuresincludinggoldandsilvernanoparticleswith65nmcoreand10nmSiO2shellwerecompared(Figure8a).TheEQEobtainedwithAu@SiO2nanoparticlesismuchlowercomparedtoAg@SiO2andalmostcoincideswiththeEQEofthebarestructure.Figure8bshowsthattheplasmonresonanceofAu@SiO2nanoparticlesisatalongerwavelengthcomparedtotheabsorptionmaximumofBiVO4butnosignificantEQEenhancementisobservedintheregion380−450nm(Figure8b),incontrastwithAg@SiO2.AsvisibleinFigure8c,thereisnotmuchinteractionbetweenlightandnanoparticles,resultinginafieldintensityinBiVO4comparablewiththebarestructure(Figure7b).Theseresultsenabletoconcludethattheplasmonicpropertiesofsilverhighlycontributetotheenhancementmechanism.Figure7.(a)EQEenhancementspectraofthehybridandbare■BiVO4sampleswith50nmfilmthicknesscorrespondingtosingleCONCLUSIONSnanoparticlesizesandtheirweightedaverage.(b−d)ElectricfieldWepresentedamethodforstudyingopticalenhancementintensitymapat427nmforthe(b)baresample,(c)hybridsamplefromnanostructuresinwater-splittingphotoelectrodesanditswith55nmsilvercorenanoparticles,and(d)hybridsamplewith65contributiontothephotocatalyticperformances.Itinvolvesnmsilvercorenanoparticles.Theelectricfieldintensitymapforthepreciseopticalmodeling,computationofthelightdistribution35nmcorenanoparticlesisshowninFigureS7.Thelightisnormallyinthephotoelectrode,andasimplifiedtreatmentofchargeincidentandpolarizedontheplaneofthecrosssection.carrierseparation,transport,andtransfer.Thisenablesaccuratedescriptionoftheopticaleffectswhilelimitingthewiththeexperimentalobservation.Agoodgeneralspectralcomputationalcost.Incombinationwithexperimentalagreementwiththemeasurementsisobserved,showingthatmeasurementsinanelectrolytecontainingsacrificialhole/thelowerEQEforthehybridsampleatshortwavelengthwithelectronscavengers,themodelwasdemonstratedtobearespecttotheexperimentalcurve(Figure6b)isaconsequencepowerfultoolfordiscriminatingbetweenopticalandnon-ofthesamephenomenonhappeningforthebaresamplebelowopticalenhancements.Themethodwasvalidatedonseveral415nm(Figure6a)whichhasbeendiscussedpreviously.Theexperimentallyfabricatedphotoelectrodes.Averygoodspectracorrespondingtosinglenanoparticlesizesshowqualitativeandquantitativeagreementbetweenthecalculatedresonantfeaturesat427,470,and490nmforthe35,55,andmeasuredopticalenhancementofthePECperformancesand65nmsilvercore,respectively.Thiscoincideswiththewasobtainedforbothaperiodicandarandomstructure.WeFigure8.(a)SimulatedEQEforabareBiVO4samplewith50nmfilmthicknessandhybridsamplesincludingeitherAg@SiO2orAu@SiO2with65nmcoreand10nmshell.(b)EQEenhancementspectrabetweenthehybridandbaresamples.(c)ElectricfieldintensitymapfortheBiVO4+Au@SiO2sampleat427nm.Thelightisnormallyincidentandpolarizedontheplaneofthecrosssection.7018https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

9TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlealsoshowedtheimpactofstructuralparametersonthetherefereesofanearlierversionofthispaperfortheirvaluableenhancement.Itisapplicabletoawidevarietyofsystemsandsuggestions.opticalsimulationmethods.Inparticular,weshowedthecontributionofresonantplasmonicandnonresonantscattering■REFERENCEStotheopticalenhancement.Ouranalysishasfinallyrevealed(1)Nowotny,J.;Bak,T.;Chu,D.;Fiechter,S.;Murch,G.E.;thatthoroughmaterialandopticalcharacterizationisrequiredVeziroglu,T.N.Sustainablepractices:Solarhydrogenfuelandinordertoachieveagreementwithexperiments.Inthefuture,educationprogramonsustainableenergysystems.Int.J.HydrogenthedevelopmentoffastsimulationmethodsthatenablesEnergy2014,39,4151−4157.precisenear-fieldcomputationswillincreasethepossibilities(2)Pinaud,B.A.;Benck,J.D.;Seitz,L.C.;Forman,A.J.;Chen,Z.;foroptimizingcomplicatedgeometriesandmaterialscombi-Deutsch,T.G.;James,B.D.;Baum,K.N.;Baum,G.N.;Ardo,S.;nations.Thisworkwillprovidetheopportunityforresearchersetal.Technicalandeconomicfeasibilityofcentralizedfacilitiesfortoelaborateefficientstrategiesforopticallyimprovingthesolarhydrogenproductionviaphotocatalysisandphotoelectrochem-solar-to-hydrogenefficiencyofwater-splittingdevicesandtoistry.EnergyEnviron.Sci.2013,6,1983−2002.understandtheoriginoftheopticaleffectsinvolvedwhen(3)Kim,J.H.;Hansora,D.;Sharma,P.;Jang,J.-W.;Lee,J.S.improvedperformancesareobserved.Towardpracticalsolarhydrogenproduction-anartificialphoto-syntheticleaf-to-farmchallenge.Chem.Soc.Rev.2019,48,1908−■1971.ASSOCIATEDCONTENT(4)Kennedy,J.H.;Frese,K.W.PhotooxidationofWateratα-Fe2*sıSupportingInformationO3Electrodes.J.Electrochem.Soc.1978,125,709−714.TheSupportingInformationisavailablefreeofchargeat(5)Dare-Edwards,M.P.;Goodenough,J.B.;Hamnett,A.;https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11342.Trevellick,P.R.ElectrochemistryandphotoelectrochemistryofDerivationoftheboundaryparameterS;inputmaterialiron(III)oxide.J.Chem.Soc.,FaradayTrans.11983,79,2027−2041.(6)Parmar,K.P.S.;Kang,H.J.;Bist,A.;Dua,P.;Jang,J.S.;Lee,J.parametersforhematiteandbismuthvanadate;thin-filmS.PhotocatalyticandPhotoelectrochemicalWaterOxidationoverresonancefortheflathematitephotoelectrode;photo-Metal-DopedMonoclinicBiVO4Photoanodes.ChemSusChem2012,generationyieldspectrumusedinthestudyofthe5,1926−1934.hematitephotoanode;EQEoftheTi/Fe2O3nanostruc-(7)Hao,Y.;Deng,J.;Zhou,L.;Sun,X.;Zhong,J.Depth-reductionturewith1500nmperiod;experimentalandmodeledinducedlowonsetpotentialofhematitephotoanodesforsolarwaterAg@SiO2nanoparticlesizedistribution;EQEoftheoxidation.RSCAdv.2015,5,31086−31090.bismuthvanadatesamplefittedbetween350and530(8)Kim,J.H.;Lee,J.S.ElaboratelyModifiedBiVO4Photoanodesnm;EQEsforthehybridsamplesBiVO4+Ag@SiO2forSolarWaterSplitting.Adv.Mater.2019,31,1806938.correspondingtosinglenanoparticledimensions;and(9)Zhong,D.K.;Cornuz,M.;Sivula,K.;Grätzel,M.;Gamelin,D.fieldintensitymapforthe35nmsilvercorenanoparticleR.Photo-assistedelectrodepositionofcobalt-phosphate(Co-Pi)(PDF)catalystonhematitephotoanodesforsolarwateroxidation.EnergyEnviron.Sci.2011,4,1759−1764.(10)Dotan,H.;Kfir,O.;Sharlin,E.;Blank,O.;Gross,M.;Dumchin,■AUTHORINFORMATIONI.;Ankonina,G.;Rothschild,A.ResonantlighttrappinginultrathinCorrespondingAuthorsfilmsforwatersplitting.Nat.Mater.2012,12,158−164.BenjaminGallinet−CSEMMuttenz,MuttenzCH-4132,(11)Zhao,J.;Guo,Y.;Cai,L.;Li,H.;Wang,K.X.;Cho,I.S.;Lee,C.H.;Fan,S.;Zheng,X.High-performanceultrathinBiVO4Switzerland;orcid.org/0000-0001-7444-3398;photoanodeontexturedpolydimethylsiloxanesubstratesforsolarEmail:bgt@csem.chwatersplitting.ACSEnergyLett.2016,1,68−75.EdwinC.Constable−DepartmentofChemistry,Universityof(12)Archana,P.S.;Pachauri,N.;Shan,Z.;Pan,S.;Gupta,A.Basel,BaselCH-4058,Switzerland;PlasmonicenhancementofphotoactivitybygoldnanoparticlesEmail:edwin.constable@unibas.chembeddedinhematitefilms.J.Phys.Chem.C2015,119,15506−15516.Authors(13)Valenti,M.;Dolat,D.;Biskos,G.;Schmidt-Ott,A.;Smith,W.LucDriencourt−DepartmentofChemistry,UniversityofA.EnhancementofthephotoelectrochemicalperformanceofBasel,BaselCH-4058,Switzerland;CSEMMuttenz,CuWO4thinfilmsforsolarwatersplittingbyplasmonicnanoparticleMuttenzCH-4132,Switzerland;SwissNanoscienceInstitute,functionalization.J.Phys.Chem.C2015,119,2096−2104.Basel4056,Switzerland;orcid.org/0000-0001-7521-(14)Valenti,M.;Kontoleta,E.;Digdaya,I.A.;Jonsson,M.P.;0465Biskos,G.;Schmidt-Ott,A.;Smith,W.A.TheRoleofSizeandCatherineE.Housecroft−DepartmentofChemistry,DimerizationofDecoratingPlasmonicSilverNanoparticlesontheUniversityofBasel,BaselCH-4058,Switzerland;PhotoelectrochemicalSolarWaterSplittingPerformanceofBiVO4-orcid.org/0000-0002-8074-0089Photoanodes.ChemNanoMat2016,2,739−747.(15)Mascaretti,L.;Dutta,A.;Kment,Š.;Shalaev,V.M.;Boltasseva,SörenFricke−CSEMMuttenz,MuttenzCH-4132,A.;Zboril,R.;Naldoni,A.Plasmon-EnhancedPhotoelectrochemicaľSwitzerlandWaterSplittingforEfficientRenewableEnergyStorage.Adv.Mater.Completecontactinformationisavailableat:2019,31,1805513.https://pubs.acs.org/10.1021/acs.jpcc.0c11342(16)Gao,H.;Liu,C.;Jeong,H.E.;Yang,P.Plasmon-enhancedphotocatalyticactivityofironoxideongoldnanopillars.ACSNanoNotes2012,6,234−240.Theauthorsdeclarenocompetingfinancialinterest.(17)Li,J.;Cushing,S.K.;Zheng,P.;Meng,F.;Chu,D.;Wu,N.Plasmon-inducedphotonicandenergy-transferenhancementofsolar■watersplittingbyahematitenanorodarray.Nat.Commun.2013,4,ACKNOWLEDGMENTS2651.WewouldliketoacknowledgefundingfromtheSwiss(18)Kim,J.K.;Shi,X.;Jeong,M.J.;Park,J.;Han,H.S.;Kim,S.H.;NanoscienceInstitute.Also,wewouldparticularlyliketothankGuo,Y.;Heinz,T.F.;Fan,S.;Lee,C.-L.;etal.EnhancingMo:BiVO47019https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

10TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlesolarwatersplittingwithpatternedAunanospheresbyplasmon-(37)Gaudy,Y.K.;Haussener,S.Rapidperformanceoptimizationinducedenergytransfer.Adv.EnergyMater.2018,8,1701765.methodforphotoelectrodes.J.Phys.Chem.C2019,123,21838−(19)Knight,M.W.;Sobhani,H.;Nordlander,P.;Halas,N.J.21851.Photodetectionwithactiveopticalantennas.Science2011,332,702−(38)Wilson,R.H.Amodelforthecurrent-voltagecurveof704.photoexcitedsemiconductorelectrodes.J.Appl.Phys.1977,48,(20)Mukherjee,S.;Libisch,F.;Large,N.;Neumann,O.;Brown,L.4292−4297.V.;Cheng,J.;Lassiter,J.B.;Carter,E.A.;Nordlander,P.;Halas,N.J.(39)Encina,E.R.;Coronado,E.A.Keysfordesigninghematite/HotElectronsDotheImpossible:Plasmon-InducedDissociationofplasmonicmetalhybridnanostructureswithenhancedphotoactiveH2onAu.NanoLett.2013,13,240−247.properties.J.Phys.Chem.C2018,122,4589−4599.(21)Mubeen,S.;Lee,J.;Singh,N.;Krämer,S.;Stucky,G.D.;(40)Gallinet,B.;Kern,A.M.;Martin,O.J.F.AccurateandversatileMoskovits,M.Anautonomousphotosyntheticdeviceinwhichallmodelingofelectromagneticscatteringonperiodicnanostructureschargecarriersderivefromsurfaceplasmons.Nat.Nanotechnol.2013,withasurfaceintegralapproach.J.Opt.Soc.Am.A2010,27,2261−8,247−251.2271.(22)Chen,Y.-C.;Hsu,Y.-K.;Popescu,R.;Gerthsen,D.;Lin,Y.-G.;(41)Moharam,M.G.;Gaylord,T.K.;Grann,E.B.;Pommet,D.A.Feldmann,C.Au@Nb@HxK1-xNbO3nanopeapodswithnear-Formulationforstableandefficientimplementationoftherigorousinfraredactiveplasmonichot-electroninjectionforwatersplitting.coupled-waveanalysisofbinarygratings.J.Opt.Soc.Am.A1995,12,Nat.Commun.2018,9,232.1068−1076.(23)Zhang,L.;Herrmann,L.O.;Baumberg,J.J.Sizedependent(42)Gallinet,B.;Butet,J.;Martin,O.J.F.NumericalmethodsforplasmoniceffectonBiVO4photoanodesforsolarwatersplitting.Sci.nanophotonics:standardproblemsandfuturechallenges.LaserRep.2015,5,16660.PhotonicsRev.2015,9,577−603.(24)Abdi,F.F.;Dabirian,A.;Dam,B.;VanDeKrol,R.Plasmonic(43)Solís,D.M.;Taboada,J.M.;Obelleiro,F.;Liz-Marzán,L.M.;enhancementoftheopticalabsorptionandcatalyticefficiencyofGarcíadeAbajo,F.J.Towardultimatenanoplasmonicsmodeling.BiVO4photoanodesdecoratedwithAg@SiO2core-shellnano-ACSNano2014,8,7559−7570.(44)Kern,A.M.;Martin,O.J.F.Pitfallsinthedeterminationofparticles.Phys.Chem.Chem.Phys.2014,16,15272−15277.opticalcrosssectionsfromsurfaceintegralequationsimulations.IEEE(25)Warren,S.C.;Voïtchovsky,K.;Dotan,H.;Leroy,C.M.;Trans.AntennasPropag.2010,58,2158−2161.Cornuz,M.;Stellacci,F.;Hébert,C.;Rothschild,A.;Grätzel,M.(45)VandeKrol,R.;Grätzel,M.PhotoelectrochemicalHydrogenIdentifyingchampionnanostructuresforsolarwater-splitting.Nat.Production;SpringerUS,2012.Mater.2013,12,842−849.(46)Chen,L.;Alarcón-Lladó,E.;Hettick,M.;Sharp,I.D.;Lin,Y.;(26)Kim,J.Y.;Magesh,G.;Youn,D.H.;Jang,J.-W.;Kubota,J.;Javey,A.;Ager,J.W.ReactivesputteringofbismuthvanadateDomen,K.;Lee,J.S.Single-crystalline,wormlikehematitephoto-photoanodesforsolarwatersplitting.J.Phys.Chem.C2013,117,anodesforefficientsolarwatersplitting.Sci.Rep.2013,3,2681.21635−21642.(27)Chen,H.M.;Chen,C.K.;Liu,R.-S.;Zhang,L.;Zhang,J.;(47)Liang,Y.;Tsubota,T.;Mooij,L.P.A.;VanDeKrol,R.HighlyWilkinson,D.P.Nano-architectureandmaterialdesignsforwaterimprovedquantumefficienciesforthinfilmBiVO4photoanodes.J.splittingphotoelectrodes.Chem.Soc.Rev.2012,41,5654−5671.Phys.Chem.C2011,115,17594−17598.(28)Bora,D.K.;Braun,A.;Erni,R.;Fortunato,G.;Graule,T.;(48)Zhang,L.;Ye,X.;Boloor,M.;Poletayev,A.;Melosh,N.A.;Constable,E.C.HydrothermaltreatmentofahematitefilmleadstoChueh,W.C.Significantlyenhancedphotocurrentforwateroxidationhighlyorientedfacetednanostructureswithenhancedphotocurrents.inmonolithicMo:BiVO4/SnO2/SibythermallyincreasingtheChem.Mater.2011,23,2051−2061.minoritycarrierdiffusionlength.EnergyEnviron.Sci.2016,9,(29)Sivula,K.;LeFormal,F.;Grätzel,M.SolarWaterSplitting:2044−2052.ProgressUsingHematite(α-Fe2O3)Photoelectrodes.ChemSusChem(49)Dotan,H.;Sivula,K.;Grätzel,M.;Rothschild,A.;Warren,S.C.2011,4,432−449.Probingthephotoelectrochemicalpropertiesofhematite(α-Fe2O3)(30)Sivula,K.;Formal,F.L.;Grätzel,M.S.WO3−Fe2O3Photoan-electrodesusinghydrogenperoxideasaholescavenger.EnergyodesforWaterSplitting:AHostScaffold,GuestAbsorberApproach.Environ.Sci.2011,4,958−964.Chem.Mater.2009,21,2862−2867.(50)Zhong,D.K.;Choi,S.;Gamelin,D.R.Near-complete(31)Rao,P.M.;Cai,L.;Liu,C.;Cho,I.S.;Lee,C.H.;Weisse,J.M.;suppressionofsurfacerecombinationinsolarphotoelectrolysisbyYang,P.;Zheng,X.SimultaneouslyEfficientLightAbsorptionand”Co-Pi”catalyst-modifiedW:BiVO4.J.Am.Chem.Soc.2011,133,ChargeSeparationinWO3/BiVO4Core/ShellNanowirePhotoanode18370−18377.forPhotoelectrochemicalWaterOxidation.NanoLett.2014,14,(51)Jiang,C.-M.;Segev,G.;Hess,L.H.;Liu,G.;Zaborski,G.;1099−1105.Toma,F.M.;Cooper,J.K.;Sharp,I.D.Composition-dependent(32)Pihosh,Y.;Turkevych,I.;Mawatari,K.;Uemura,J.;Kazoe,Y.;functionalityofcoppervanadatephotoanodes.ACSAppl.Mater.Kosar,S.;Makita,K.;Sugaya,T.;Matsui,T.;Fujita,D.;etal.Interfaces2018,10,10627−10633.Photocatalyticgenerationofhydrogenbycore-shellWO3/BiVO4(52)Hayes,D.;Hadt,R.G.;Emery,J.D.;Cordones,A.A.;nanorodswithultimatewatersplittingefficiency.Sci.Rep.2015,5,Martinson,A.B.F.;Shelby,M.L.;Fransted,K.A.;Dahlberg,P.D.;11141.Hong,J.;Zhang,X.;etal.Electronicandnuclearcontributionsto(33)Boudoire,F.;Toth,R.;Heier,J.;Braun,A.;Constable,E.C.time-resolvedopticalandX-rayabsorptionspectraofhematiteandPhotoniclighttrappinginself-organizedall-oxidemicrospheroidsinsightsintophotoelectrochemicalperformance.EnergyEnviron.Sci.impactsphotoelectrochemicalwatersplitting.EnergyEnviron.Sci.2016,9,3754−3769.2014,7,2680−2688.(53)Segev,G.;Dotan,H.;Ellis,D.S.;Piekner,Y.;Klotz,D.;(34)Qiu,Y.;Liu,W.;Chen,W.;Chen,W.;Zhou,G.;Hsu,P.-C.;Beeman,J.W.;Cooper,J.K.;Grave,D.A.;Sharp,I.D.;Rothschild,A.Zhang,R.;Liang,Z.;Fan,S.;Zhang,Y.;etal.Efficientsolar-drivenThespatialcollectionefficiencyofchargecarriersinphotovoltaicandwatersplittingbynanoconeBiVO4-perovskitetandemcells.Sci.Adv.photoelectrochemicalcells.Joule2018,2,210−224.2016,2,No.e1501764.(54)Wiktor,J.;Reshetnyak,I.;Strach,M.;Scarongella,M.;(35)Suter,S.;Graf,R.;MorenoGarcía,D.;Haussener,S.Buonsanti,R.;Pasquarello,A.SizableexcitoniceffectsunderminingOptimizingandimplementinglighttrappinginthin-film,mesostruc-thephotocatalyticefficiencyofβ-Cu2V2O7.J.Phys.Chem.Lett.2018,turedphotoanodes.ACSAppl.Mater.Interfaces2020,12,5739−5749.9,5698−5703.(36)Gaudy,Y.K.;Haussener,S.Utilizingmodeling,experiments,(55)Manjavacas,A.;Liu,J.G.;Kulkarni,V.;Nordlander,P.andstatisticsfortheanalysisofwater-splittingphotoelectrodes.J.Plasmon-inducedhotcarriersinmetallicnanoparticles.ACSNanoMater.Chem.A2016,4,3100−3114.2014,8,7630−7638.7020https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

11TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(56)Khardani,M.;Bouaïcha,M.;Bessaïs,B.Bruggemaneffectivemediumapproachformodellingopticalpropertiesofporoussilicon:comparisonwithexperiment.Phys.StatusSolidiC2007,4,1986−1990.(57)Qiu,Y.;Leung,S.-F.;Zhang,Q.;Hua,B.;Lin,Q.;Wei,Z.;Tsui,K.-H.;Zhang,Y.;Yang,S.;Fan,Z.Efficientphoto-electrochemicalwatersplittingwithultrathinfilmsofhematiteonthree-dimensionalnanophotonicstructures.NanoLett.2014,14,2123−2129.(58)Cendula,P.;Steier,L.;Losio,P.A.;Grätzel,M.;Schumacher,J.O.Analysisofopticallossesinaphotoelectrochemicalcell:Atoolforpreciseabsorptanceestimation.Adv.Funct.Mater.2018,28,1702768.(59)Boidin,R.;Halenkovic,T.;Nazabal,V.;Beneš,L.;Němec,P.̌Pulsedlaserdepositedaluminathinfilms.Ceram.Int.2016,42,1177−1182.(60)Johnson,P.;Christy,R.Opticalconstantsoftransitionmetals:Ti,V,Cr,Mn,Fe,Co,Ni,andPd.Phys.Rev.B:SolidState1974,9,5056−5070.(61)Tamirat,A.G.;Rick,J.;Dubale,A.A.;Su,W.-N.;Hwang,B.-J.Usinghematiteforphotoelectrochemicalwatersplitting:areviewofcurrentprogressandchallenges.NanoscaleHoriz.2016,1,243−267.(62)Yan,D.;Tao,J.;Kisslinger,K.;Cen,J.;Wu,Q.;Orlov,A.;Liu,M.Theroleofthedomainsizeandtitaniumdopantinnanocrystallinehematitethinfilmsforwaterphotolysis.Nanoscale2015,7,18515−18523.(63)Cooper,J.K.;Gul,S.;Toma,F.M.;Chen,L.;Liu,Y.-S.;Guo,J.;Ager,J.W.;Yano,J.;Sharp,I.D.Indirectbandgapandopticalpropertiesofmonoclinicbismuthvanadate.J.Phys.Chem.C2015,119,2969−2974.(64)Palik,E.D.HandbookofOpticalConstantsofSolids;Elsevier,1985.(65)Abdi,F.F.;Firet,N.;vandeKrol,R.EfficientBiVO4thinfilmphotoanodesmodifiedwithcobaltphosphatecatalystandW-doping.ChemCatChem2013,5,490−496.7021https://doi.org/10.1021/acs.jpcc.0c11342J.Phys.Chem.C2021,125,7010−7021

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭