Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown

Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown

ID:81816784

大小:3.40 MB

页数:7页

时间:2023-07-21

上传者:U-14522
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第1页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第2页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第3页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第4页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第5页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第6页
Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown_第7页
资源描述:

《Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes - Ali et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterLocalInteractionsGoverningthePerformancesofLithium-andManganese-RichCathodesShehabE.Ali,*WojciechOlszewski,AndreaSorrentino,CarloMarini,ArefehsadatKazzazi,NinaLaszczynski,AgneseBirrozzi,AngeloMullaliu,StefanoPasserini,DinoTonti,andLauraSimonelli*CiteThis:J.Phys.Chem.Lett.2021,12,1195−1201ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:ThelocalstructuralandelectronicaltransformationsoccurringalongthefirstchargeanddischargecycleofLi-andMn-richLi[Li0.2Ni0.16Mn0.56Co0.08]O2cathodematerialhavebeencharacterizedbyX-rayabsorptionspectroscopyatseveralcomplementaryedges.Theirreversiblespinelformation,occurringattheexpensesofthecyclinglayeredphaseduringthefirstcharge,isquantified(about10%)andspatiallylocalized.ThelocalstrainsinducedbytheNioxidationhavebeenevaluated.TheyinducetheformationofalowspinMn3+inthelayeredstructureinparalleltotheirreversibleformationofthespinelphaseintheparticlesbulk.Thechargebalancehasbeenquantifiedforalltheelementsalongthefirstchargingcycle,confirmingareversibleoxygenoxidationalongthecharge.Overall,thesequantitativeresultsprovideanexperimentalbasisformodelingaimedtocontrolthestructureanditsevolution,forinstance,hinderingthespinelformationforthebenefitofthematerialcyclelife.hereductionofgreenhousegasgenerationassociatedmolecularO2insidethesolidasaresultoftheMnmigrationinTwiththeconsumptionoffossilresourcesandthethealkalinelayershasbeenproposed,togetherwiththeideaincreasingenergyneedsobligethequickdevelopmentofthatthefirst-cyclevoltagehysteresisisdeterminedbythelocalsustainableenergyalternatives,includingenergyharvestingandorderingoflithiumandtransition-metalionsinthetransition-22storage.Rechargeablebattery-basedtechnologiesareemergingmetallayers.Boththesepropositionsareinagreementwithtorespondtothelastchallenge.ThisrequiresthedevelopmentourrecentfindingthatMnispartiallyreducedduringcharge23ofbatteryelectrodematerialswithhigherenergyandpower(i.e.,lithiumremoval).Infact,apartiallylithiatedMnspinelphasewouldcontainMn3+,whileontheotherhand,adensitiesaswellasthesatisfactionofseveralrequirementssuchassafety,sustainability,cost-effectiveness,andlarge-scaleMn−η1−O2moietybondingforeseeninthecaseoftrappedO21−5formation22wouldcorrespondtoalocalMnreduction.9manufacturing.Li-richlayeredtransition-metal(TM)TwodifferentMn3+localelectronicconfigurationsareDownloadedviaUNIVOFNEWMEXICOonMay16,2021at10:00:25(UTC).oxidecathodematerials,storingextraLi-ionsintheTMlayers,areamongthemostpromising,showingoutstandingpossibleintheLi[Li0.2Ni0.16Mn0.56Co0.08]O2chargedsystem,233+reversiblecapacities,exceeding250mAh/g.Thishasbeeninlowspin(LS)andhighspin(HS).TheHSMnphaseisSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.attributedtotheanionicredoxactivityinadditiontothatofcompatiblewiththeformationofaspinelphaseduringcharge.3+thetransitionmetals.5−8Instead,theMnLSphaseisexpectedtobelayeredandto24favorreversiblecycling.Interestingly,theMnredox-stateLi-richtransition-metaloxidesstructurecanbedescribedasuponcyclingiscorrelatedwiththeNioxidation/reduction,thesuperpositionofthelayeredrhombohedralstructurewitha6suggestingthatthestraininducedbythestrongNi−ObondmonoclinicLi2MnO3superlattice.InLi-richNMCcathodescontractionuponNioxidationtriggerstheMnreduction,theoxygennetworkconsistsofastatisticaldistributionof3+23favoringtheMnLSphase.TheimportanceoflocalstrainsvariousOsublattices,correspondingtothecationicdisorder9issuggestedalsobytheintrinsicdependenceonthetransitionandchemicalsubstitutions.Unfortunately,inmostofthemetalrelativeratiosindefiningthematerialbehavior,thatcancases,theanioniccapacityachievedinchargeispartly7,10−12beexploitedtodesignsystemssuchascore(Ni-rich)-shell(Mn-irreversibleindischarge.Theelectronicoriginofthisirreversibilityhasbeenproposed,withthereversibilityoftheanioniccapacitybeinglimitedtoacriticalnumberofOholesReceived:November20,2020peroxygen.9Accepted:January13,2021Moreover,ithasbeensuggestedthattheout-of-planecationPublished:January22,202113−16migrationandasubsequentphasetransitionfromlayered17−21tospinel-likephaseduringcyclingcouldberesponsibleforthepoorcyclability.Morerecentlytheformationoftrapped©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c034621195J.Phys.Chem.Lett.2021,12,1195−1201

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.(a)VoltageprofileofLi1.2Mn0.56Ni0.16Co0.08O2,wherethechargepointsP01(pristine),P03andP04(beginningandendofthevoltageplateau),P05(fullycharged),P08(fullydischargedafterthefirstcycle),P12(fullychargedafter5cycles),andP16(fullychargedafter50cycles)havebeenindicated.MnK-edgek2χ(k)EXAFSoscillations(b)andcorrespondingFouriertransformmagnitudes(c)collectedoversamplesrepresentingmainlythefirstcharge/dischargecycle(blacksolidlines).Thedashedlinesreportthefitsobtainedseparatelyforthefirst(red)andsecond(blue)shells.Figure2.(a)Estimationofthespinelvslayeredphaseratio.Theinsetinpanel(a)showstheNi4+vsNi2+phaseexchange.(b)QuantitativeamountoftheMn4+HSandMn3+LS/HScomponentsfordifferentchargepoints,estimatedbycombiningtheresultsreportedherewiththose23publishedearlier.(c)Estimatedoxygenoxidationstateand(d)quantificationofthepossibleO2formationalongthecharge,consideringtheresultsreportedinpanelsaandbandassumingtheexpectedCooxidationstateandpossibleoxygenvacancies,asdetailedintheSupportingInformation.rich)NCMcathodeparticlesshowingasynergisticeffectonedgeX-rayabsorptionspectroscopy(XAS)studyattheMn,25theelectrochemicalperformance.Ni,andOKandtheMnL3absorptionedges.Moreover,theInthepresentworkthespinelformationandtheroleoflocalenergy-resolvedsoftX-raytransmissionmicroscopy(ER-strainsontheLi[Li0.2Ni0.16Mn0.56Co0.08]O2electrochemicalTXM)attheOK-andMnL3-edgesallowedforcharacterizingperformancehavebeenaddressedquantitativelybyamulti-thespinelandNi4+spatialdistributionalongisolatedparticles.1196https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTheLi1.2Mn0.56Ni0.16Co0.08O2cathodevoltageprofileisreflectedinavariableaverageoxygenoxidationstate.InthereportedinFigure1a,togetherwiththelabelingofthesecondone,oxygenvacanciesaretakenintoaccount.Thesesamplesinvestigatedinthepresentwork,towhichwewillalsowouldexistalreadyinthepristineelectrodetocompensatetheMnoxidationstateiftheinitialO2−stateisassumed.refertoaschargepoints.TheMnK-edgeEXAFSoscillationsandcorrespondingFouriertransforms(FTs)oftheEXAFSFormationofadditionalvacanciesisalsoconsideredatthe29signal,providingreal-spaceinformationonthepartialatomicendofcharge(P04→P05)inagreementwiththeliteraturedistributionaroundtheMnatoms,arereportedinFigure1,(greenhistogram).Notably,similarfiguresareobtainedbypanelsbandc,respectively.imposingeithernochangeintheoxygenoxidationstateattheTheFTmainpeaksat∼1.44and∼2.42Åcorrespondtotheendofthevoltageplateau(P04→P05)orbysettingtheOfirstandsecondshellsaroundMncomposedbyOandoxidationstateinthefullydischargedstate(P08)to−2.Thistransition-metal(TM=Mn,Co,Ni)atoms,respectively.IncanbeconsideredasupportforbothassumptionsandtothistheSupportingInformation,thecomplementaryNiK-edgewholesecondapproximation.AssumingthattheoxygenEXAFSoscillations(FigureS2a)andrelativeFTs(FigureS2b)vacancyscenarioisthemorerealisticone,beingthatthe29collectedoverthesamesamplesetarereportedtogetherwithoxygenreleasebetweenP04andP05isempiricallyobserved,detailsofdatamodelingatbothedges.theaverageOoxidationhasbeenfoundtoevolvereversiblyDuringthechargeapartialstructuraldegradationofthefrom−2,inthepristine,to−1.75,inthefullychargestate.AlayeredphaseintoaspinelphasehasbeenconsideredasreductionintheOoxidationstateisconsistentwiththereportedintheliterature.6,12,23BykeepingthenumberoffreeformationoftrappedO2,whichshouldbeaccompaniedbya22parametersintheEXAFSfittingalwaysbelowtheintrinsicnewweakMn−Obondaround2.2Å,compatiblewiththelimitdefinedbythedataquality(seedetailsintheSupportingincreasedspectralweightatthisdistanceforsamplesP03,P04,Information),itwaspossibletofollowtheevolutionoftheMnandP05inthereportedFT(Figure1c).So,inFigure2dthespinelandlayeredphaseratio,aswellastheNi4+formation,asoxygenoxidationstateobtainedfromthissecondapproachisafunctionofthechargepointasshowninFigure2a.usedtodeterminethepossibleamountoftrappedO2.TheAtthebeginningofthecharge(P01→P03),NiisalmostjumpofthebarbetweenP04andP05inpaneldreflectsthefullyoxidized,whileonlyalittleamountofspinelphaseisoxygenlossattheendofthevoltageplateau.Theoxygenformed.Instead,amoresubstantialformationofthespinelreleasecorrespondstothereductionoftheOstoichiometry,phaseisoccurringalongthevoltageplateau(P03→P04),whileO2trappingcorrespondstotheloweringoftheOwheretheremainingNi2+isoxidized.Finally,attheendoftheoxidationstate.Thetwophenomenaareexpectedtooccurspatiallywherethecationicchargeislowerandtocompetevoltageplateau(P04→P05),theNioxidationstatedoesnot9,22dependingbythecationslocalarrangements.Remarkably,change,andmorespinelphaseisgenerated,upto10%.AstheminimumstoichiometryoftheO2−stateis1.40(Figureexpected,theNioxidation/reductionisreversible,whilethe2d),whichcorrespondstoatotalholenumberaround0.3/O,formationofthespinelphaseis,instead,irreversible.93+justbelowthemaximumof1/3predictedbyYahiaetal.forThepreviouslyproposedMn(LS)formationinthe22thereversibleanioniccapacity.AlthoughinourcasepartoflayeredphasecouldberelatedtothetrappedO2formation.3+theseholesresultsinanirreversibleoxygenloss,thisestimationInstead,theMnHSstateishereassignedtothelithiatedcanbeconsideredaconfirmationofthereportedprediction.spinelformation,givenitsMnoxidationstateof+3.5.ByInordertoaddressthepossibleroleofstrainsincontrollingconsideringtheaverageMnlocalmagneticmomentpreviously23theMnphasesformation,quantitativeparametersonthelocaldeterminedoverthesamesamplesetcomparedwith3+4+structurearoundtheMnsiteshavebeenextracted.TheMnK-referencevaluesoftheMnHS(LS)andMnpure24,26−28edgeEXAFSfitsdeterminedtheMn−Ointeratomicdistancesphases,therelativefractionofthethreeMnspeciescan(R)andtheircorrespondingmeansquarerelativedisplace-benowquantitativelydetermined(Figure2b).Byconsidering2ments(σ),asshowninFigure3forthelayered(a,c)andtheexpectedCooxidationstate,wecanthenalsoevaluatethespinel(b,d)phases.Theanalysisofthesecondshell(Mn-chargebalancealongthefirstcharge−dischargecycle(Figure2TM),reportedintheSupportingInformation,showsthesamecanddandTable1).Figure2cdepictstheoxygenoxidationevolutions,confirmingtheresults.Thebondlengthsvariationstatecalculatedintwodifferentscenarios.Inafirstalongthefirstcycleislargelydifferentforthelayeredandapproximation,thenominalstoichiometryisconsideredspinelphases.constantalongthefirstcycle(orangehistogram),whichisThemainMn−Obondlengthinthelayeredstructure(Rlayered)displayssmallchangesbycharging,inagreementwithTable1.ExpectedStoichiometryandEstimatedOxidationtheworkofBuchholzetal.6SuchabondcontractsduringtheStateAsaFunctionoftheChargePointfirstchargeinapartiallyreversibleway.Ineffect,ithasbeenproposedthattostabilizethelayeredphasewithMn3+inLSP01P03P04P05P08configurationtheMn−Obondshouldbecompressed.21Listoichiometry1.20.880.570.110.86Regardingthespinelphase,itsMn−Olocalbonddistanceoxidationstate11111(Rspinel)matcheswiththeNi−OoneatthepristinesampleNistoichiometry0.160.160.160.160.16(Figures3bandS3a).Atthebeginningofthevoltageplateauoxidationstate23.4442(P03)RspineliscomparabletotheMn−OdistanceobtainedforCostoichiometry0.080.080.080.080.08thespinelreference(blacksquareinFigure3b).Itthenshowsoxidationstate34443astrongexpansionduringthefirstcharge,followedbyaMnstoichiometry0.560.560.560.560.56smallercontractionalongthefirstdischarge.Thislastchangeoxidationstate3.713.263.233.223.30appearsreversibleforthenextcycle.TheMn−OlengthOstoichiometry1.921.921.921.631.63changesoccurringuponthefirstchargecouldberelatedtotheoxidationstate−2−1.86−1.75−1.76−2strainsinducedbytheNioxidation/reduction6,23andcould1197https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.Mn−Obondlengths(a,b)andDebye−Wallerfactors(c,d)atthedifferentchargepointsforthelayered(toppanels)andspinel(bottompanels)phases,respectively.Figure4.(a)Mn3+HSphasedistributionmapsand(b)Ni4+phasedistributionmapsatdifferentchargepoints.Theimageshavebeenobtainedusingtheformula(y−ypre)/(ypost−ypre),whereyistheTXMimagecollectedat639.3eV(a)or528.12eV(b)andypreandypostrepresenttheabsorbanceimagesbeforepre-edgeandaftermainedge,respectively.Thecontrastscaleisthesameforalltheimagesinthesamepanel.PixelsnotcontainingMn(a)orO(b)havebeenshadowed.bringstructuraldegradation,hamperingLidiffusion.Wehereindischarge,theσ2valuesforbothphasesremainhigherthaninproposethattheinitialmoderatespinelformation(P01→thepristineelectrode(σ2(P01)<σ2(P08)),suggestingtheP03)occursatthesurfaceofthematerialnanoparticles,reasonimpossibilityoffullreleaseofstrainsinthismultiphaseforwhichitlooksnotaffectedbystrains.Instead,alongthescenario.Additionally,whiletheσ2ofthespinelphaseivoltageplateauthemajorityofthespinelphaseisformedinincreasessignificantlybycycling,showingaratherlargetheparticlebulk,withanexpandedMn−Oshell,becauseofvariationinthechargedstateafterfew(P12)orseveralthestrainsinducedbythestronglocalNi−Ocontraction.The(P16)cycles,theonesofthelayeredphaselooklessaffectedMn−OexpansioninthespinelphasethenstabilizestheMn3+bycycling.ThissuggeststhatthespinelphaseundergoesLSphaseformationinthebulk.Thisproposedinterpretationstructuraldegradationbycycling,probablybecauseoftheagreeswiththepreviouslyreportedcorrelationofNi4+andJahn−TellerdistortionsexpectedfortheMn3+HSsites.303+23ThespatialdistributionofthespinelphaseanditsMnbulkdistributionsalongthedelithiatednanoparticles.ThecoexistenceofdifferentphasesandthechangesinthecorrelationwiththeNi4+formationishereaddressedbyTMionicradiibecauseoftheevolutionoftheirelectronicenergy-dependentTXMmeasurementscollectedattheOK-propertiesintroducestrainsinthesystem,andthisaffectstheandMnL3-edges.Toidentifythespinelphase,itisnecessaryMn−Omeansquarerelativedisplacements(σ2,shownintoconsidertheintrinsicdifferencesintheelectronicstructureiFigure3c,d)whosehighvaluesindicatealargestructuraloftheMn3+HS(spinel)andLS(layered)phase.Thelatter,disorder.Asexpectedbytheformationofnewcoexistinghavingallthreet2gorbitalsoccupiedandtheegempty,looksphases,theσ2valuesforboththelayeredandthespinelphasessimilartotheoneofHSMn4+.21Thus,theMnL-edgei3increasebycharging.Importantly,attheendofthefirstabsorptionspectraofthelayeredLSMn3+andHSMn4+phase1198https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterareexpectedtobesimilar.TheshiftofthefirstMnL3-edge■ASSOCIATEDCONTENTabsorptionfeaturearound639eVtowardlowerenergyby*sıSupportingInformationchargingcanbeinterpretedasthedirectsignatureofthespinelTheSupportingInformationisavailablefreeofchargeatphaseformation,whichallowsmappingofthespinelphase.https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03462.Theshoulderaround528eVintheOK-edgeabsorption4+Methods,EXAFSanalysis,TXMimagestreatment,andprepeakisinsteadthesignatureoftheNiphase31−33evaluationofthechargebalance(PDF)formation.SpinelandNi4+distributionmapsdeterminedfromimagescollectedaroundtheOK-andMnL3-edges(Supporting■AUTHORINFORMATIONInformation)forthedifferentchargepointsarereportedinCorrespondingAuthorsFigure4panelsaandb.ThemapevolutionalongthefirstLauraSimonelli−ALBASynchrotronLightFacility,08290cycleisconsistentwiththespinelandNi4+fractionreportedinCerdanyoladelVallès,Spain;orcid.org/0000-0001-Figure2a.Inthepristinestate,wheretheNi4+phaseisabsent,5331-0633;Email:lsimonelli@cells.esaminorspinelphasecouldbeobservedontheparticles’ShehabE.Ali−ALBASynchrotronLightFacility,08290surface,visibleasthinbrightregionssurroundingthesampleCerdanyoladelVallès,Spain;PhysicsDepartment,FacultyofScience,SuezCanalUniversity,Ismailia,Egypt;orcid.org/particlesinFigure4aP01.Basedonthisintensity,theamount0000-0001-9519-1054;Email:shehab_ali@ofspinelphaseinthepristinematerialisestimatedbelow1%.science.suez.edu.egAttemptsinconsideringthisfractionintheEXAFSfitswereunsuccessful,consistently,withthislowamount.JustbeforeAuthorsthevoltageplateau(P03)aslightglobalincreaseofbrightnessWojciechOlszewski−ALBASynchrotronLightFacility,inFigure4aindicatesthatonlyasmallfractionofspinelphase08290CerdanyoladelVallès,Spain;FacultyofPhysics,formsattheparticlessurface,whiletheNi4+sitesareclearlyUniversityofBialystok,15-245Bialystok,Polandpresentandhomogeneouslydistributedalongtheparticles.AndreaSorrentino−ALBASynchrotronLightFacility,AlongthevoltageplateauboththespinelandtheNi4+phases08290CerdanyoladelVallès,SpainincreaseinthebulkwhileaspatialcorrelationbetweenthemCarloMarini−ALBASynchrotronLightFacility,08290CerdanyoladelVallès,Spainappears.InP04,andevenmoreinP05,theregionswitha4+ArefehsadatKazzazi−HelmholtzInst.Ulm(HIU),higherspinelamountgenerallycorrespondtoareaswhereNiElectrochemistryI,89081Ulm,Germany;KarlsruheInst.ofispresentinhigheramounts.Finally,afterthedischarge,while4+Technology(KIT),76021Karlsruhe,GermanytheNiphasepracticallydisappears,amajorfractionoftheNinaLaszczynski−HelmholtzInst.Ulm(HIU),spinelphaseisstillvisible,inagreementwiththehardX-rayElectrochemistryI,89081Ulm,Germany;KarlsruheInst.ofEXAFSdata.BoththeTXMmapsandtheNiandMnK-edgeTechnology(KIT),76021Karlsruhe,GermanyEXAFSconsistentlyindicatearound70%(100%)ofNi4+AgneseBirrozzi−HelmholtzInst.Ulm(HIU),phasejustbefore(after)thevoltageplateauanduptoaElectrochemistryI,89081Ulm,Germany;KarlsruheInst.oftotalof10%ofspinelformation.ThisquantitativematchTechnology(KIT),76021Karlsruhe,GermanybetweenthehardandsoftX-raydatastronglysupportstheAngeloMullaliu−DepartmentofIndustrialChemistry,Tosoreportedinterpretation.MontanariUniversityofBologna,40136Bologna,Italy;Insummary,thequantitativespinelformationanddetailedorcid.org/0000-0003-2800-2836localstructuralandelectronictransformationsofcoexistingStefanoPasserini−HelmholtzInst.Ulm(HIU),phaseshavebeeninvestigatedintheLi-ElectrochemistryI,89081Ulm,Germany;KarlsruheInst.ofTechnology(KIT),76021Karlsruhe,Germany;[Li0.2Ni0.16Mn0.56Co0.08]O2cathode,alongthefirstelectro-orcid.org/0000-0002-6606-5304chemicalcycle.Theresultspermitustoaffirmthat80%ofMnDinoTonti−Inst.deCiènciadeMaterialsdeBarcelona,isalmostirreversiblyreducedalongthefirstcharge,inConsejoSuperiordeInvestigacionesCientìficas,Campusconjunctionwiththeoxygenoxidation.ThekeyroleofstrainsUAB,Bellaterra,Spain;orcid.org/0000-0003-0240-1011incontrollingthecompetingMnphaseshasbeenconfirmedCompletecontactinformationisavailableat:anddetailed.Alongthevoltageplateau,upto10%ofahttps://pubs.acs.org/10.1021/acs.jpclett.0c03462distortedspinelphasegrowsprogressivelyandirreversiblyinthebulk,withnofurtherspinelformationinthefollowingfewNotescycles.TheformedspinelphasepresentsanexpandedMn−OTheauthorsdeclarenocompetingfinancialinterest.shell,likelyduetostrainsinducedbythestronglocalNi−Ocontraction.Thislocallyexpandedstructureinturnstabilizes■3+ACKNOWLEDGMENTStheMnLSphaseformationinthebulk,whichcouldbenefitThisresearchwassupportedbytheSpanishGovernment,cycling.Moreover,afterthefirstcycle,thespinelphaseshowsathroughthe“SeveroOchoa”ProgrammeforCentersofprogressiveincreaseofthelocalstructuraldisorder,incontrastExcellenceinR&D(FUNFUTURECEX2019-000917-S),tothelayeredphase,explainingthegoodcathodecyclability.andtheprojectsMAT2017-91404-EXP,RTI2018-096273-B-Thehere-reportedquantificationofthecoexistingMnlocalI00,andRTI2018-097753-B-I00withFEDERcofunding.D.T.phaseevolutionfordifferentchargepointspermitsustoparticipatesintheFLOWBAT2021platformspromotedbyprovidenewkeyinputparametersforaquantitativetheSpanishNationalResearchCouncil(CSIC).TheHIUdescriptionoftheinvestigatedsystemsinordertoimproveauthorsacknowledgethebasicfundingfromtheHelmholtzthecyclestability.Association.1199https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■LithiumRichCathodeMaterialbyInSituX-rayDiffractionREFERENCESTechnique.J.PowerSources2015,285,156−160.(1)Manthiram,A.AReflectiononLithium-IonBatteryCathode.(19)Genevois,C.;Koga,H.;Croguennec,L.;Menétrier,M.;́Nat.Commun.2020,11,1550.Delmas,C.;Weill,F.InsightintotheAtomicStructureofCycled(2)Kim,T.-H.;Park,J.-S.;Chang,S.K.;Choi,S.;Ryu,J.H.;Song,Lithium-RichLayeredOxideLi1.20Mn0.54Co0.13Ni0.13O2UsingH.-K.TheCurrentMoveofLithiumIonBatteriestowardstheNextHAADFSTEMandElectronNano-diffraction.J.Phys.Chem.CPhase.Adv.EnergyMater.2012,2,860−−872.2015,119,75−83.(3)Tarascon,J.M.;Armand,M.IssuesandChallengesFacing(20)Han,J.-G.;Lee,S.J.;Lee,J.;Kim,J.-S.;Lee,K.T.;Choi,N.-S.RechargeableLithiumBatteries.Nature2001,414,359−367.TunableandRobustPhosphite-DerivedSurfaceFilmtoProtect(4)Tarascon,J.M.KeyChallengesinFutureLi-BatteryResearch.Lithium-RichCathodesinLithium-IonBatteries.ACSAppl.Mater.Philos.Trans.R.Soc.,A2010,368,3227−3241.Interfaces2015,7,8319−8329.(5)Rozier,P.;Tarascon,J.M.Li-RichLayeredOxideCathodesfor(21)Yin,W.;Grimaud,A.;Rousse,G.;Abakumov,A.-M.;Senyshyn,Next-GenerationLi-IonBatteries:ChancesandChallenges.J.A.;Zhang,L.;Trabesinger,S.;Iadecola,A.;Foix,D.;Giaume,D.;Electrochem.Soc.2015,162(14),A2490.Tarascon,J.-M.StructuralEvolutionattheOxidativeandReductive(6)Buchholz,D.;Li,J.;Passerini,S.;Aquilanti,G.;Wang,D.;Giorgetti,M.X-rayAbsorptionSpectroscopyInvestigationofLimitsintheFirstElectrochemicalCycleofLi1.2Ni0.13Mn0.54Co0.13O2.Nat.Commun.2020,11,1252.Lithium-Rich,Cobalt-PoorLayered-OxideCathodeMaterialwith(22)House,R.A.;Maitra,U.;Perez-Osorio,M.A.;Lozano,J.G.;́HighCapacity.ChemElectroChem2015,2,85.Jin,L.;Somerville,J.W.;Duda,L.C.;Nag,A.;Walters,A.;Zhou,K.-(7)Kim,U.-H.;Jun,D.-W.;Park,K.-J.;Zhang,Q.;Kaghazchi,P.;J.;etal.SuperstructureControlofFirst-CycleVoltageHysteresisinAurbach,D.;Wang,C.M.;Ahn,D.;Yoon,C.S.;Sun,Y.-K.;etal.etalOxygen-RedoxCathodes.Nature2020,577,502−508.PushingtheLimitofLayeredTransitionMetalOxideCathodesfor(23)Simonelli,L.;Sorrentino,A.;Marini,C.;Ramanan,N.;Heinis,High-EnergyDensityRechargeableLiIonBatteries.EnergyEnviron.D.;Olszewski,W.;Mullaliu,A.;Birrozzi,A.;Laszczynski,N.;Sci.2018,11,1271−1279.Giorgetti,M.;etal.RoleofManganeseinLithium-and(8)Hua,W.B.;Chen,M.Z.;Schwarz,B.;Knapp,M.;Bruns,M.;ManganeseRichLayeredOxidesCathodes.J.Phys.Chem.Lett.Barthel,J.;Yang,X.S.;Sigel,F.;Azmi,R.;Senyshyn,A.;etal.etal2019,10(12),3359−3368.Lithium/OxygenIncorporationandMicrostructuralEvolutionduring(24)Huang,Z.;Du,F.;Wang,C.;Wang,D.;Chen,G.Low-SpinSynthesisofLi-RichLayeredLi[Li0.2Ni0.2Mn0.6]O2Oxides.Adv.3+EnergyMater.2019,9(8),1803094.MnIoninRhombohedralLiMnO2PredictedbyFirst-Principles(9)BenYahia,M.;Vergnet,J.;Saubanere,M.;Doublet,M.L.Calculations.Phys.Rev.B:Condens.MatterMater.Phys.2007,75,UnifiedPictureofAnionicRedoxinLi/Na-IonBatteries.Nat.Mater.No.054411.2019,18(5),496−502.(25)Hua,W.;Schwarz,B.;Azmi,R.;Müller,M.;DewiDarma,M.(10)deBiasi,L.;Schwarz,B.;Brezesinski,T.;Hartmann,P.;Janek,S.;Knapp,M.;Senyshyn,A.;Heere,M.;Missyul,A.;Simonelli,L.;J.;Ehrenberg,H.Chemical,Structural,andElectronicAspectsofetal.Lithium-ion(De)intercalationMechanisminCore-ShellFormationandDegradationBehavioronDifferentLengthScalesofLayeredLi(Ni,Co,Mn)O2CathodeMaterials.NanoEnergy2020,Ni-RichNCMandLi-RichHE-NCMCathodeMaterialsinLi-Ion78,105231.Batteries.Adv.Mater.2019,31,1900985.(26)Guda,A.A.;Smolentsev,N.;Rovezzi,M.;Kaidashev,E.M.;(11)Hu,E.;Yu,X.;Lin,R.;Bi,X.;Lu,J.;Bak,S.;Nam,K.;Xin,H.Kaydashev,V.E.;Kravtsova,A.N.;Mazalova,V.L.;Chaynikov,A.P.;L.;Jaye,C.;Fischer,D.A.;etal.etalEvolutionofRedoxCouplesinWeschke,E.;Glatzel,P.;etal.etalSpin-PolarizedElectronicStructureLi-andMn-richCathodeMaterialsandMitigationofVoltageFadebyoftheCore−ShellZnO/ZnO:MnNanowiresProbedbyXRayReducingOxygenRelease.Nat.Energy2018,3,690−698.AbsorptionandEmissionSpectroscopy.J.Anal.At.Spectrom.2013,(12)Sathiya,M.;Abakumov,A.M.;Foix,D.;Rousse,G.;Ramesha,28,1629.K.;Saubanere,M.;Doublet,M.L.;Vezin,H.;Laisa,C.P.;Prakash,A.̀(27)Yang,K.;Khomskii,D.I.;Wu,H.UnusualLayeredOrderandS.;etal.etalOriginofVoltageDecayinHigh-CapacityLayeredOxideChargeDisproportionationintheDouble-PerovskiteCompoundElectrodes.Nat.Mater.2015,14,230.Ca2FeMnO6.Phys.Rev.B:Condens.MatterMater.Phys.2018,98,(13)Eum,D.;Kim,B.;Kim,S.J.;Park,H.;Wu,J.;Cho,S.-P.;Yoon,No.085105.G.;Lee,M.H.;Jung,S.-K.;Yang,W.;etal.etalVoltageDecayand(28)Wu,H.;Burnus,T.;Hu,Z.;Martin,C.;Maignan,A.;Cezar,J.RedoxAsymmetryMitigationbyReversibleCationMigrationinC.;Tanaka,A.;Brookes,N.B.;Khomskii,D.I.;Tjeng,L.H.IsingLithium-RichLayeredOxideElectrodes.Nat.Mater.2020,19(4),MagnetismandFerroelectricityinCa3CoMnO6.Phys.Rev.Lett.2009,419.102,026404.(14)Evans,T.;Piper,D.M.;Sun,H.;Porcelli,T.;Kim,S.C.;Han,(29)Laszczynski,N.;vonZamory,J.;Kalhoff,J.;Loeffler,N.;S.S.;Choi,Y.S.;Tian,C.;Nordlund,D.;Doeff,M.M.;etal.etalInChakravadhanula,V.S.K.;Passerini,S.ImprovedPerformanceofSituEngineeringoftheElectrode−ElectrolyteInterfaceforStabilizedVOx-CoatedLi-RichNMCElectrodes.ChemElectroChem2015,2,OverlithiatedCathodes.Adv.Mater.2017,29,1604549.1768.(15)Lee,H.;Lim,S.B.;Kim,J.Y.;Jeong,M.;Park,Y.J.;Yoon,W.-(30)Song,J.;Li,B.;Chen,Y.;Zuo,Y.;Ning,F.;Shang,H.;Feng,S.CharacterizationandControlofIrreversibleReactioninLi-RichG.;Liu,N.;Shen,C.;Ai,X.;etal.etalHigh-PerformanceLi-Mn-OLi-CathodeduringtheInitialChargeProcess.ACSAppl.Mater.InterfacesRichCathodeMaterialwithRhombohedralSymmetryviaIntraLayer2018,10,10804−10818.Li/MnDisordering.Adv.Mater.2020,32(16),2000190.(16)Kleiner,K.;Strehle,B.;Baker,A.R.;Day,S.J.;Tang,C.C.;(31)Kim,M.G.;Shin,H.J.;Kim,J.H.;Park,S.H.;Sun,Y.K.XASBuchberger,I.;Chesneau,F.-F.;Gasteiger,H.A.;Piana,M.OriginofInvestigationofInhomogeneousMetal-OxygenBondCovalencyinHighCapacityandPoorCyclingStabilityofLi-RichLayeredOxides:BulkandSurfaceforChargeCompensationinLi-IonBatteryCathodeALong-DurationinSituSynchrotronPowderDiffractionStudy.Li[Ni1/3Co1/3Mn1/3]O2J.J.Electrochem.Soc.2005,152(7),A1320−Chem.Mater.2018,30,3656−3667.A1328.(17)Hua,W.;Wang,S.;Knapp,M.;Leake,S.J.;Senyshyn,A.;(32)Qiao,R.;Wray,L.A.;Kim,J.-H.;Pieczonka,N.P.W.;Harris,Richter,C.;Yavuz,M.;Binder,J.R.;Grey,C.P.;Ehrenberg,H.;S.J.;Yang,W.DirectExperimentalProbeoftheNi(II)/Ni(III)/etal.etalStructuralInsightsintotheFormationandVoltageNi(IV)RedoxEvolutioninLiNi0.5Mn1.5O4Electrodes.J.Phys.Chem.DegradationofLithium-andManganese-RichLayeredOxides.Nat.C2015,119,27228−27233.Commun.2019,10,5365.(33)Zhou,J.;Hong,D.;Wang,J.;Hu,Y.;Xie,X.;Fang,H.(18)Muhammad,S.;Lee,S.;Kim,H.;Yoon,J.;Jang,D.;Yoon,J.;ElectronicStructureVariationoftheSurfaceandBulkofaPark,J.-H.;Yoon,W.-S.DecipheringtheThermalBehaviorofLiNi0.5Mn1.5O4CathodeasaFunctionofStateofCharge:X-Ray1200https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterAbsorptionSpectroscopicStudy.Phys.Chem.Chem.Phys.2014,16,13838−13842.1201https://dx.doi.org/10.1021/acs.jpclett.0c03462J.Phys.Chem.Lett.2021,12,1195−1201

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭