Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown

Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown

ID:81816632

大小:4.85 MB

页数:8页

时间:2023-07-21

上传者:U-14522
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第1页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第2页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第3页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第4页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第5页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第6页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第7页
Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown_第8页
资源描述:

《Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation - Liu et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterEnhancedNear-InfraredEmissionfromCarbonDotsbySurfaceDeprotonation##EnshanLiu,TaoLiang,ElenaV.Ushakova,BingzheWang,BohanZhang,HuiqunZhou,GuichuanXing,ChunmingWang,ZikangTang,*SongnanQu,*andAndreyL.RogachCiteThis:J.Phys.Chem.Lett.2021,12,604−611ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Carbondots(CDs)withefficientexcitationandemissionindeep-red/near-infrared(NIR)spectralrangeareimportantforbioimagingapplications.Herein,wedevelopasimpleandeffectivemethodtosignificantlyenhanceboththeabsorptionandemissionofCDsindeep-red/NIRbysuppressingnonradiativechargerecombinationviadeprotonationoftheCDsurface.Ascomparedtoaqueoussolutionsatroomtemperature,NIRemissionofCDsinN,N-dimethylformamideandglycerolexperiencea50-and70-foldincreaseat−20°C,respectively,duetoenhanceddeprotonationabilityandviscosity.OnthebasisoftheadjustableNIRfluorescenceintensityofCDs,multileveldataencryptionintheNIRregionisrealizedbycontrollingthehumidityandthetemperatureofaCD-inkstampedpaper.wingtotheirattractiveopticalproperties,lowcostandphotothermalconversionefficiency,leadingtolowPLQYinO5,14−16biocompatibility,luminescentcarbondots(CDs)havetheNIRregion.Therefore,itisofprimaryimportancetoemergedaspromisinglight-emittingmaterialsforvariousstudyandunderstandthefactorsaffectingthePLemissionand12applicationssuchasoptoelectronics,photocatalysis,biosens-thephotothermalconversionofCDsinthedeep-red/NIR3,4ingandbioimaging.TherehavebeenalotofreportsonCDsregion,inordertodesignCDswithenhancedemissioninthiswithahighphotoluminescencequantumyield(PLQY)inthespectralrange,andtosuppresstheenergylossesinthe1,2,4visiblespectralregion.Longerwavelengthemissioninsamples.ItisknownthatthesurfaceofCDsoftencontainsdeep-redandnear-infrared(NIR)spectralregionsareessentialabundant−OHgroups,buttherewereonlyafewstudiesforinvivobiologicalimaging,wherebothtissueautofluor-concerningtheimpactsoftheprotonationprocessatCDescenceandlightscatteringareminimized,thusimprovingsurfaceontheirenergystructure.175,6DownloadedviaBUTLERUNIVonMay16,2021at14:10:43(UTC).bothimagingcontrastandspatialresolution.SeveralgroupsRecently,wereportedthesynthesisofNIRemissiveCDshavereportedonCDswithadeep-redand/orNIRemissions,throughasolvothermalreactionindimethylsulfoxide7−9whichwereexcitedbylightinthegreenspectralregion.(DMSO)fromtwocommonprecursorscitricacidandurea,Heteroatomdoping,sizecontrol,surfaceengineering,andwhichexhibitedadominantabsorptionbandat605nmwithacontrolofthechemicalenvironmentofCDswereusedtoshoulderat650nm.5Under655nmexcitation,theaqueousSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.modulateabsorptionbandsandNIRemissionofCDs.Bietal.solutionoftheseCDsshowedaNIRemissionpeakat720nmhavereportedafull-rangeUV−Vis−NIRemissiveCDsbywithaverylowPLQYof0.2%.Inthiswork,wereportasimple10performingFandNcodoping;theiroptimumexcitationandeffectivemethodtosignificantlyenhanceboththewavelengthwasaround550nmwithPLQYof9.8%.ChaoetabsorptionandemissionoftheseCDsindeep-red/NIRregional.synthesizedCDsfromo-phenylenediaminethroughaone-bysuppressingnonradiativechargerecombinationviastephydrothermaltreatment,whichshowedmulticolordeprotonationoftheCDsurface,whichhasbeenaccom-emissionwithanexcitation-independentbehaviorindifferentplishedbychangingthesolventdeprotonationabilityand11solvents.Ourgrouprealizedfull-coloremissiveCDsbyviscosity.Theemergeddominantabsorptionbandat650nmemployingthreedifferentsolvents,wheretheemissioncolorandenhancedNIRemissionwithPLQYreachingupto4%12wascorrelatedtotheCDsize.WehavealsodemonstratedNIRabsorptionandenhancedNIRemissionofCDswhichhasbeenrealizedthroughthesurfaceadsorptionofelectron-Received:November12,2020acceptorgroups.13However,thereisstillalackofefficientAccepted:December23,2020syntheticmethodstomovethemainabsorptionbandofCDsPublished:December31,2020todeep-redorNIRregionsandtorealizeanefficientdeep-redorNIRlightexcitedNIRemission.Furthermore,mostofthereportedCDswithdeep-redorNIRabsorptionexhibitedhigh©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c03383604J.Phys.Chem.Lett.2021,12,604−611

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.(a)Absorptionand(b)PLspectra(excitationat655nm)ofdiluteaqueoussolutionsofCDsatdifferentpHvalues(concentration:50ppm).Thedashedlinein(b)showsthepositionofthePLpeakinH2OatpH=7.(c)FT-IRspectraofCDsatdifferentpHvalues.(d)TemperatureevolutionsoftheaqueoussolutionsofCDs(100μg·mL−1)atdifferentpHvaluesunder655nmlaserirradiationatapowerdensityof1W·cm−2.Figure2.Schematicillustrationoftheprotonation/deprotonationoftheCDsurface.and6%weredetectedintheCDsglycerolandDMSOaqueoussolution,CDsexhibitthemainabsorptionbandatsolutionsatroomtemperature,respectively.ComparedtoCD605nmwithashoulderbandat665nm,andaNIRemissionaqueoussolutionatroomtemperature,a50-and70-foldpeakedat715at655nmexcitation.Inacidicaqueoussolution,increaseoftheNIRemissionhasbeenobservedfortheCDsintheshapeoftheabsorptionspectrumoftheCDsisnearlytheN,N-dimethylformamide(DMF)andglycerolsolutionsatsame,whiletheintensitiesofboththemainabsorptionband−20°C,respectively.BasedontheenvironmentcontrollableandNIRemissionareweakened.Incontrast,inalkalineNIRemissionofCDs,multilevelfluorescenceencryptionwasaqueoussolution,theabsorptionintensityoftheCDsisrealizedbychangingthehumidityandtemperatureintheCD-increasedandthemainabsorptionbandbecomesred-shiftedinkstampedpaper.to645nm,whiletheNIRemissionisalsoenhancedbutCDsweresynthesizedaccordingtothepreviouslypublishedslightly(∼10nm)blue-shifted.TofurtherverifythepHeffectprocedure,fromcitricacidandureaviathesolvothermalontheCDsurfacechemicalgroups,FT-IRspectrawere5methodinDMSO.AsdemonstratedbyX-rayphotoelectronmeasuredonsamplesobtainedbyfreeze-dryingofCDaqueousspectroscopy(XPS)andFourier-transforminfrared(FT-IR)solutionsatpH=7andpH=9.AsshowninFigure1c,themeasurements,theseCDscontainedhydroxyl,amide,carbon-broadbandat3000−3500cm−1consistsof2peaksataboutyl,andaminegroupsatthesurface,whicharesensitivetopH3430and3200cm−1,whichcanbeassignedtoν(O−H)andνinaqueoussolutionduetotheprotonation/deprotonation(N−H)vibrationsinthearomaticring,respectively.Theprocesses.Astheprotonationanddeprotonationcanincreaseintenseandbroadpeakataround1650cm−1canbeattributedordecreasethepopulationofthe-NH2and−OHgroupsattotheamidegroupatthesurface,andν(C−N)andν(C−C)theCDsurface,respectively,potentialchangesofopticalvibrationsinthearomaticring.ComparedtoCDsatpH=7,propertiesofCDsindiluteaqueoussolutionsatdifferentpHtheabsorptionbandofCDsatpH=9at3430cm−1isvaluesweretested.Figure1aandFigure1bshowabsorptionincreased,whilethebandat3200cm−1isdecreased,suggestingandPLspectra(at655nmexcitation)ofCDsinaqueousthattheincreaseofpHresultsindeprotonationofCDsurfacesolutionsatthreedifferentpHvaluesof5,7,and9.InaneutralwhichinturnleadstoimprovementofthePLsignal.Asshown605https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetteraTable1.OpticalCharacteristicsofCDsinDiluteH2O,Glycerol,Ethanol,DMSO,andDMFSolventssolventprotic/aproticrelativepolarityabspeak(nm)PLpeak(nm)PLlifetime(ns)PLQY(%)viscosity(10−3Pa·s,25°C)H2O16657100.800.20.89glycerolprotic0.8126707051.284.0934ethanolprotic0.6546606901.782.21.07DMSOaprotic0.4446706852.325.91.99DMFaprotic0.3866656852.424.90.79aThemassconcentrationoftheCDsinallmeasurementswere0.05mg/mL.Figure3.(a)UV−visibleabsorptionand(b)PLspectra(excitedat655nm)ofCDsinH2O,glycerol,ethanol,DMSO,andDMFsolvents(concentration:50ppm).ThegapinthePLspectraofethanol,glycerol,andH2O)at650−670isduetosubtractionofthepeakfromtheexcitationsource.(c)PLdecaycurvesofCDsinH2O,glycerol,ethanol,DMSO,andDMF,monitoredat700nmunder640nmexcitation.IRFstaysforinstrumentalresponsefunction.(d)Peakpositionsofthelowestenergyabsorption(solidsquares)andPL(solidcircles)ofCDsderivedfromthedataprovidedinframes(a)and(b),withthesamecolorcodingfordifferentsolvents.Thedashedlinesareguidesfortheeye.(e)PLQY(solidtriangles)andPLlifetimes(hollowtriangles)ofCDsplottedvstherelativesolventpolarity,thecolorcodingindicatetherespectivesolvent.(f)NIRfluorescenceimages(under655nmexcitation,top)andbrightfieldimages(bottom)underdaylightofCDsindifferentsolvents.inFigure2,atacidicpH,theprotonationrendersthesurfaceofability,polarity,andviscosity.Thedataobtained,alongsidetheCDswithlesselectron-richgroups,whileatthebasicpH,withthecharacteristicsofthesolventsused,aresummarizedinthedeprotonationprocessleadstotheappearanceofmoreTable1.PanelsaandbofFigure3showabsorptionandelectron-richsurfacegroups.emissionspectraofCDsindifferentsolventsatroomAswasreportedinourpreviouswork,theCDsexhibithightemperature.UponchangingsolventsfromH2OtoDMF,photothermalconversionefficiencyinneutralaqueousbothabsorptionandPLspectrabecomebetterstructured,5solution,equalto59%.ThephotothermalbehaviorofCDswhichagreeswiththeobservationsfortheorganicdyes,whereinaqueoussolutionsatdifferentpHvaluesweretestedandareboththeH-bondingandtheprotonationoftheluminophore’ssummarizedinFigure1d.Under655nmlaserirradiationatagroupsmaycausebroadeningandblurringofpeaksinthepowerdensityof1W·cm−2for10min,thefinaltemperatureofabsorptionandemissionspectra.18Inproticsolvents(glycerolthe100ppmofCDaqueoussolutionsatpHequal5,7,and9andethanol),thePLQYsofCDsreach2.2%and4.0%,haveincreasedfrom27°Cto63,61,and53°C,respectively,respectively,whichismorethan20-foldenhancementoftheirindicatingdecreasedphotothermalperformancewithincreas-PLQYinH2O(0.2%).BothDMFandDMSOareaproticingpH.ConsideringthatthemaindifferenceoftheCDsurfacesolventswithgooddeprotonationabilityduetotheirelectron-atlowandhighpHvaluesisthepopulationoftheamine,acceptorgroupsCO/SO;theNIRemissionofCDsincarbonylgroups,andH-bonding,itcanbeinferredthatthethesetwosolventsisfurtherenhanced,withPLQYsreachingdecreasedH-bondinganddeprotonationprocessofCDsat4.9%inDMFand5.9%inDMSO.ThePLdecaycurvesforbasicpHresultsinalowervibrationalenergydissipation,NIRemissionoftheCDsindifferentsolventsmonitoredatwhichmightbethereasonfortheenhancedNIRemission.700nmunder640nmexcitationareshowninFigure3c.TheTofurtherrevealthedetailsofinteractionofCDswiththeaveragePLlifetimeofCDsinaproticsolvents(DMFanddifferentchemicalenvironments,theiropticalresponseswereDMSO)islongerthaninproticsolvents(ethanolandmeasuredinasetofsolventswhichdifferindeprotonationglycerol),whichwellcoincideswiththeobservationthat606https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.ProposedenergydiagramsoftheCDs:(a)duringprotonation/deprotonation,(b)withtheeffectofsolventpolarity,(c)inH2Osolution,and(d)inDMFsolution.S*coreandS*surfareenergystatescorrespondingofthecore(I1inFigure5a−c)andsurface(I2inFigure5a−c)absorptionbands,respectively.Abs,Fluo,andknrdesignateabsorption,emission,andnonradiativedissipationofenergy,respectively,withthelastshownbydashedlines.Theinternalconversionisshownbywavylines.Thethicknessofthelinescorrespondstotheanticipatedintensityofthetransitions.Figure5.AbsorptionspectraofCDs(50ppmconcentration)in(a)H2O,(b)DMF,and(c)glycerolatdifferenttemperatures.Dashedlinesindicatethepositionsoftwomajorabsorptionpeaks(I1at∼605nmandI2at∼665nm).(d)I2/I1ratioagainsttemperatureforthe50ppmofCDsinH2O,DMF,andglycerol.PLspectraof50ppmofCDsin(e)H2O,(f)DMF,and(g)glycerolatdifferenttemperatures,measuredat655nmexcitation.(h)TemperaturedependenceoftheNIRemissionintensityof50ppmofCDsinH2O,DMF,andglycerol.deprotonationoftheCDsurfaceresultsinincreasedPLAtthesametime,acleartrendofshiftingthePLpeakofintensity.AplausibleenergystructureofCDsdependingonCDstowardlowerenergieswithincreasingsolventpolarityistheprotonation/deprotonationprocessispresentedinFigureobservedinFigure3d,whichisdifferentfromanalmost4a.Theexcitedstateofthesurface(S*surf)canbeshiftedtounchangedpositionoftheirabsorptionpeak.Thisimpliesthatlowerorhigherenergyduringtheprotonationordeprotona-thepolarityofthesolventaffectsthelowestexcitedstatefrom18tionprocess,respectively.DuringtheCDsurfacedeproto-whichtheradiativerecombinationoccurs,whichisillustratednation,theenergygapbetweentheexcitedstateofthecoreintheenergystructurediagrampresentedinFigure4b.After(S*core)andtheexcitedstatesofthesurface(whicharerelatedabsorptionofthephoton,arapidinternalconversionoccurstotothesolventchange)decreasestogetherwithnonradiativethelowestexcitedenergystate,S*surf.Theexcitedstateisthenenergydissipation,resultingintheincreaseofPLQYaswasstabilizedbythepolarsolventmoleculesthroughreorientationobservedforCDsinaproticsolvents(Figure3e).oftheirdipolesandrelaxationaroundtheexcitedstate,which607https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure6.TAspectraofCDsin(a)H2Oand(b)DMFatindicatedtimesdelays,afterexcitationatλpump=400nm(1kHz,50fs)withanexcitationdensityof5.0μJcm−2.BleachsignalkineticsoftheCDsin(c)HOand(d)DMFforλ=400nmandprobewavelengthsof600nm(black2pumpsymbols/lines)and680nm(redsymbols/lines).Dotsareexperimentalpoints,andsolidlinesarefittinglines.resultsinthedecreaseoftheenergyoftheexcitedstatealmostunchangedabsorption(Figure5d).Itisworth(S*surf).Withtheincreaseofthesolventpolarity,thiseffectmentioningthatforCDsinglycerolsolution,themainPLbecomesstronger,leadingtotheobservationofthePLpeakshiftsfrom705to685nmupondecreasingtemperature,18emissionatlowerenergies.BothPLQYandtheaveragePLwhichisaccompaniedbyanalmost8-foldenhancementandlifetimeofCDsexhibitalineardependenceonthesolventappearanceofthelowerenergybandintheemissionspectrum,polarity,asshowninFigure3e.ItisworthmentioningthatforwhichthenhasashapesimilartothatofCDsinproticCDsinglycerolsolutionthePLQYbreaksoutfromtheabove-solvents.Theseobservationsarecorrelatedwiththosementionedlineardependenceandislargerthanexpectedobservedfororganicfluorophores,whoseemissionsshiftto18accordingtothePLlifetimevalue.Thisobservationcanbeshorterwavelengthswithatemperaturedecrease.Attheexplainedbytakingintoaccountthelargevalueoftheglycerolsametime,asatlowertemperatures,thesolventsbecomemoreviscosity(Table1),whichfavorssuppressionofthevibrationalviscous(FigureS1),thetimeforthesolventreorientationmotionsand,hence,nonradiativelossesinthesample.Thisincreases,andtherateKSinFigure4bdecreases,whichmayresultsintheincreaseofthePLQYofCDinglycerol.Figure3falsoaffecttheenergystructureofCDs.ThiseffectissimilartoshowsthebrightfieldandNIRimagesoftheCDsindifferentthedecreaseofthesolventpolarity,whichisinagreementwithsolvents,whicharewellconsistentwithvaluesofPLQYshownchangesofabsorptionandthePLpeakpositionsshownininFigure3e.Figure3d.SincethevibrationsofsurfacegroupsofCDs,suchasamine,Theexcited-statedynamicsofCDsinteractingwithdifferentcarbonyl,andamide,andtheirinteractionswithsolventaresolventswerefurtherinvestigatedviatransientabsorptionsensitivetothetemperatureoftheenvironment,temperature-(TA)spectroscopymeasurementsperformedunderfemto-dependentmeasurementsoftheabsorptionandNIRemissionsecondpulseexcitationat400nm.Inaqueoussolution,CDsspectraofCDsinH2O,glycerol,andDMFwerecarriedoutexhibitasingleground-statebleach(GSB1)peakcenteredat(Figure5).FortheCDsinH2O,uponincreasingthe600nmwhichisrelatedtotheI1absorptionband(Figure6a).temperaturefrom10to80°C,theabsorptionbandI1atFollowingthetimeprofileat600nm,asshowninFigure6c,605nmgraduallydecreased,whiletheabsorptionbandI2atthisinitiallypopulatedstatetheexcitedstateoftheinner665nmincreased,whichsomewhatcontradictsthecommoncarboncoredeactivatesrapidlywithin1.54±0.52ps,andobservationthatthePLintensitytendstodecreaseathigharound90%ofitsinitialpopulationdepopulatesthrough19temperatures.ThereasoncouldbethattheH-bondingnonradiativerelaxation,i.e.,thevibrationalmotions.TheweakbetweenH2Omoleculesandthesurfacecarbonylgroupsoflong-livedstatewithalifetimeof804.00±247.71psisCDsmaybecomeweakenedathighertemperatures,leadingtoassignedtotheexcitedstateoftheCDsurface(I2absorptionalowerdegreeoftheprotonationoftheCDsurface,whichisband).AsfortheCDsinDMF,asshowninFigure6b,afterthenaccompaniedbyanincreaseoftheabsorptionbandat665theinitialexcitationoftheCDinnercore(GSB1at600nm),anm,andtherelatedNIRemissionat705nm.TheI2/I1ratioofbleachingfeaturearound680nm(GSB2)ascribedtoCDtheabsorptionpeaksat665nm/605nmisgiveninFigure5d.surfacestatearisesduetotheenergytransferprocessfromtheFortheCDsinDMFandglycerolsolvents,theoppositeeffectexcitedstateofthecore(I1absorptionband).Thisenergyisobserved:theNIRemissionintensityincreasedwithtransferprocessisratherfast,withalifetimeof0.38±0.01ps.decreasingthetemperature(Figure5h),accompaniedbyThebleachingfeatureoftheinnercarboncore(GSB1)608https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure7.(a)SchematicdiagramofthemultilevelencryptionsystembasedontheCDink.(b)Brightfield(iandv)andNIRfluorescenceimages(ii−iv,vi−viii)oftheCDpatternexcitedat655nm.Imagesweretakenwithout(i−iv)andwith(v−viii)coverpaper.deactivatestothegroundstatein457.19±185.23ps,andtowhichisduetotheefficientpenetrationofNIRemissionfromthesurfacestate(GSB2)in192.83±9.12ps,asshownintheCDink,whichconstitutesthefirstleveloftheencryption.Figure6d.ThelatterprocesscorrespondstotheenhancedAftersprayingwateronthepatternedpaper(Figure7b-iiiandNIRemission.TheassignmentoftheGSB2tothesurfacestateFigure7b-vii),theNIRemissionfromthepatternisagreeswellwiththesteady-statespectralmeasurementsshownsignificantlyweakenedandcannotbedetectedthroughtheinFigure1a,Figure3a,andFigure5,sincetheabsorptionpeakcoverpaper,whichisduetothequenchingofCDNIRat660−670nmishighlysensitivetothechemicalenviron-emissionbyH2O.TheNIRemissionoftheCDpatternment:H-bonding,protonation/deprotonation,andsolventsensitivetohumiditycanbeencryptedonthesecondlevel.polarity.First,asdemonstratedabove,loweringthetemperaturecanEnergydiagramssummarizingtheproposedmechanismsofincreasetheviscosityofglycerolandincreasetheNIRemissionthephotophysicalprocessestakingplaceintheCDsinintensity.Toprovethis,theCD-inkstampedpaperwasmovedaqueousandDMFsolutionsarepresentedinFigure4c,d,toarefrigeratorandheldat−20°Cfor10min,afterwhichtherespectively.Intheaqueoussolution,afterthefastabsorptionpatterncouldbeagainrecognizedthroughthecoverpaper,astotheexcitedcorestate(S*core),theenergyrapidlydissipatesshowninFigure7b-ivandFigure7b-viii.Thisisthesecondtothegroundstatenonradiatively;onlyasmallpartoftheleveloftheencryption.Thus,multileveldataencryptionbasedenergytransferstothesurfacestate(S*surf)followedbyontheadjustableNIRemissionofCDsbycontrollingrelaxationtothelowestenergystatefromwhichbothradiativehumidityandtemperatureoftheenvironmenthasbeenandnonradiativeenergydissipationsmayoccur.Theradiativerealized.recombinationissuppressedbyvibrationalmotionsandInsummary,wedevelopedasimpleandeffectivemethodtoprotonationoftheCDsurface.FortheCDsinDMFsolution,significantlyenhanceboththeabsorptionandemissionofCDsafterabsorptiontothehighestenergylevels,theexcitationinthedeep-red/NIRregionbysuppressingnonradiativeundergoesatransfertotheS*surfenergylevel,andfromthereitchargerecombinationviadeprotonationoftheCDsurface,dissipatestothelowestexcitedstate,whichliesslightlyhigherwhichhasbeenaccomplishedbychangingthesolventthanthatfortheCDsinaqueoussolutionduetothelowerdeprotonationabilityandviscosity.TheabsorptionbandatpolarityofDMFanditsstrongerdeprotonationability.From630−700nmincreased,andthePLQYoftheNIRemissionthelowestexcitedstate,excitonsrelaxradiativelygivingrisetoreached4%and6%forCDsdissolvedinglycerolandDMSOtheNIRemissionwithalmost25-foldenhancementcomparedsolutionsatroomtemperature,respectively,whichisalargetothatoftheCDaqueoussolution,whichindicatestronglyimprovementcomparedtoonly0.2%PLQYinaqueoussuppressednonradiativerelaxation.solution.ThetemperaturedecreaseledtofurtherenhancementThepeculiarNIRemissionpropertiesofCDsindifferentoftheNIRemissionduetotheincreasedviscosityofthesolventsofferthepossibilityoftheirapplicationinmultilevelsolvent,whichresultedinloweringenergylossesattheCDinformationencryption.Here,theCDssolutioninglycerolwassurface.AscomparedwithCDaqueoussolutionsatroomusedasaninktostampluminescentpatternsonacommercialtemperature,theintensityoftheNIRemissionofCDsinDMFprintingpapertorealizemultipleluminescence-basedandglycerolsolutionsat−20°Cincreased50-and70-fold,encryptions,asillustratedinFigure7a.AsshowninFigurerespectively.Inourspectroscopydataanalysis,weascribe7b,aluminescentpatternofthe“UniversityofMacau”inabsorptionbandsat520−630and630−700nmasbelongingChinesecharactersstampedbytheCDinkcanbeobservedtotheCDinnercorestateandsurfacestate,respectively,withunderdaylightbutitnaturallybecomescompletelyinvisiblethemaincontributiontotheNIRemissioncomingfromthewhencoveredwithaprintingpaper.Under655nmexcitation,surfacestate.OnthebasisofthechangesoftheNIRemissionthepatterncanbeeasilyobservedthroughthecoverpaper,ofCDsdeterminedbychangingenvironment,multilevel609https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterfluorescenceencryptionwasrealizedbyvaryinghumidityandEngineering,UniversityofMacau,Taipa999078,MacautemperatureoftheCD-inkstampedpaper.OurstudyopensupSARafacileroutetoenhancementoftheCDemissionofCDsandTaoLiang−JointKeyLaboratoryoftheMinistryofprovidesanewprospectforfuturepracticalapplicationsofEducation,InstituteofAppliedPhysicsandMaterialsCDsindataencryption.Engineering,UniversityofMacau,Taipa999078,MacauSAR■CHEMICALSANDMATERIALSElenaV.Ushakova−DepartmentofMaterialsScienceandEngineeringandCentreforFunctionalPhotonics(CFP),CityCitricacid,urea,DMF,DMSO,ethanol,andglycerolwereUniversityofHongKong,Kowloon999077,HongKongpurchasedfromAladdin.H2OwasdeionizedandpurifiedonaSAR;CenterofInformationOpticalTechnologies,ITMOLabconcoWaterProspurificationsystem.AllreagentshadatUniversity,SaintPetersburg197101,Russia;orcid.org/leastanalyticalgradepurityandwereusedasreceivedwithout0000-0001-6841-6975furtherpurification.BingzheWang−JointKeyLaboratoryoftheMinistryof■Education,InstituteofAppliedPhysicsandMaterialsSYNTHESISOFCDSEngineering,UniversityofMacau,Taipa999078,MacauFirst,citricacid(2g)andurea(6g)werereactedat160°CforSAR4hundersolvothermalconditionsin30mLofDMSOandBohanZhang−JointKeyLaboratoryoftheMinistryofthencooledtoroomtemperature.TheacquireddarksolutionEducation,InstituteofAppliedPhysicsandMaterialswasmixedwithtwiceitsvolumeofethanolandthenEngineering,UniversityofMacau,Taipa999078,Macaucentrifugedat8000rmin−1for5min.TheprecipitatewasSARcollectedandfreeze-dried.HuiqunZhou−StateKeyLaboratoryofQualityResearchinChineseMedicine,InstituteofChineseMedicalSciences,■CHARACTERIZATIONUniversityofMacau,Taipa999078,MacauSARUV−visabsorptionspectrawerecollectedonaShimadzuUV-GuichuanXing−JointKeyLaboratoryoftheMinistryof2600spectrophotometer.Steady-statePLspectrawereEducation,InstituteofAppliedPhysicsandMaterialsmeasuredonanOceanOpticsQEpro,andtime-resolvedPLEngineering,UniversityofMacau,Taipa999078,Macauspectra,onaLifeSpec-IIlifetimespectrometer(EdinburghSAR;orcid.org/0000-0003-2769-8659Instruments).FT-IRspectrawereperformedonaBrukerChunmingWang−StateKeyLaboratoryofQualityResearchTensor27FT-IRspectrometer.TAmeasurementswereinChineseMedicine,InstituteofChineseMedicalSciences,performedonanUltrafastSystemHELIOSspectrometerinUniversityofMacau,Taipa999078,MacauSARanondegeneratepump−probeconfiguration.ThelasersourceAndreyL.Rogach−DepartmentofMaterialsScienceandwastheCoherentLegendregenerativeamplifier(100fs,1EngineeringandCentreforFunctionalPhotonics(CFP)andkHz,400nm)seededbyaCoherentVitesseoscillator(100fs,ShenzhenResearchInstitute,CityUniversityofHongKong,80MHz).ThepHvaluesoftheCDaqueoussolutionswereKowloon999077,HongKongSAR;orcid.org/0000-adjustedwithHClorNaOHaqueoussolutionbyprecisepH0002-8263-8141Meter(PHS-25,China).TheviscositydataofallsolventswasCompletecontactinformationisavailableat:collectedonaDiscoveryHR-2hybridrheometer.Thehttps://pubs.acs.org/10.1021/acs.jpclett.0c03383photoluminescencequantumyieldofallnanomaterialswascollectedatroomtemperatureonanEdinburghFS5AuthorContributionsspectrophotometer.#E.S.LiuandT.Liangcontributedequallytothiswork.■AuthorContributionsASSOCIATEDCONTENTS.N.Qudesignedtheexperiments.E.S.LiuandT.Liang*sıSupportingInformationperformedthesynthesisandcharacterizations.B.Z.WangTheSupportingInformationisavailablefreeofchargeatperformedthetransientabsorptionmeasurements.S.N.Qu,Z.https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03383.K.Tang,G.C.Xing,E.S.Liu,E.V.Ushakova,H.Q.Zhou,B.Viscosityevolutions(PDF)H.ZhangandC.M.Wangparticipatedinthedataanalysis.E.S.Liu,T.Liang,S.N.Qu,E.V.Ushakova,B.Z.Wang,andA.■L.Rogachwrotethepaper.AllauthorscontributedtotheAUTHORINFORMATIONmanuscript.CorrespondingAuthorsNotesSongnanQu−JointKeyLaboratoryoftheMinistryofTheauthorsdeclarenocompetingfinancialinterest.Education,InstituteofAppliedPhysicsandMaterialsEngineering,UniversityofMacau,Taipa999078,Macau■SAR;orcid.org/0000-0003-4159-096X;ACKNOWLEDGMENTSEmail:songnanqu@um.edu.moThisworkwassupportedbytheNationalNaturalScienceZikangTang−JointKeyLaboratoryoftheMinistryofFoundationofChina(61922091and91733302),theScienceEducation,InstituteofAppliedPhysicsandMaterialsandTechnologyDevelopmentFund,MacauSAR(0040/Engineering,UniversityofMacau,Taipa999078,Macau2019/A1,0073/2019/AMJ,FDCT/199/2017/A3,andSAR;Email:zktang@um.edu.moFDCT/013/2017/AMJ),theFundfromtheUniversityofMacau(SRG2019-00163-IAPME),theResearchandDevelop-AuthorsmentGrantforChairProfessorFundfromtheUniversityofEnshanLiu−JointKeyLaboratoryoftheMinistryofMacau(CPG2020-00026-IAPME),ResearchGrantEducation,InstituteofAppliedPhysicsandMaterials(MYRG2019-00103-IAPME)fromtheUniversityofMacau,610https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

7TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettertheMinistryofScienceandHigherEducationoftheRussianRed/Near-Infrared-EmissiveCarbonNanodotswithMultiphotonFederation(Grant14.Y26.31.0028),theRFBRProjectNo.18-ExcitedUpconversionFluorescence.Adv.Sci.2019,6,1900766.29-19122mk,theResearchGrantCouncilofHongKong(17)Stepanidenko,E.A.;Arefina,I.A.;Khavlyuk,P.D.;Dubavik,S.A.R.(CityU11306619),andtheScienceTechnologyandA.;Bogdanov,K.V.;Bondarenko,D.P.;Cherevkov,S.A.;Kundelev,E.V.;Fedorov,A.V.;Baranov,A.V.;etal.InfluenceoftheSolventInnovationCommitteeofShenzhenMunicipalityEnvironmentonLuminescentCenterswithinCarbonDots.Nanoscale(JCYJ20190808181201899).2020,12,602−609.(18)Lakowicz,JosephR.PrinciplesofFluorescenceSpectroscopy;■Springer:NewYork,2006.REFERENCES(19)Song,Y.;Zhu,S.;Xiang,S.;Zhao,X.;Zhang,J.;Zhang,H.;Fu,(1)Feng,T.;Tao,S.;Yue,D.;Zeng,Q.;Chen,W.;Yang,B.RecentY.;Yang,B.InvestigationintotheFluorescenceQuenchingBehaviorsAdvancesinEnergyConversionApplicationsofCarbonDots:fromandApplicationsofCarbonDots.Nanoscale2014,6,4676−4682.OptoelectronicDevicestoElectrocatalysis.Small2020,16,2001295.(2)Zhou,Y.;Zahran,E.M.;Quiroga,B.A.;Perez,J.;Mintz,K.J.;Peng,Z.;Liyanage,P.Y.;Pandey,R.R.;Chusuei,C.C.;Leblanc,R.M.Size-dependentPhotocatalyticActivityofCarbonDotswithSurface-stateDeterminedPhotoluminescence.Appl.Catal.,B2019,248,157−166.(3)Li,S.;Su,W.;Wu,H.;Yuan,T.;Yuan,C.;Liu,J.;Deng,G.;Gao,X.;Chen,Z.;Bao,Y.;etal.TargetedTumourTheranosticsinMiceviaCarbonQuantumDotsStructurallyMimickingLargeAminoAcids.Nat.Biomed.Eng.2020,4,704−716.(4)Liu,H.;Sun,Y.;Yang,J.;Hu,Y.;Yang,R.;Li,Z.;Qu,L.;Lin,Y.HighPerformanceFluorescenceBiosensingofCysteineinHumanSerumwithSuperiorSpecificityBasedonCarbonDotsandCobalt-derivedRecognition.Sens.Actuators,B2019,280,62−68.(5)Bao,X.;Yuan,Y.;Chen,J.;Zhang,B.;Li,D.;Zhou,D.;Jing,P.;Xu,G.;Wang,Y.;Hola,K.;etal.InVivoTheranosticswithNear-́infrared-emittingCarbonDots-HighlyEfficientPhotothermalTher-apyBasedonPassiveTargetingafterIntravenousAdministration.Light:Sci.Appl.2018,7,91.(6)Liu,J.;Geng,Y.;Li,D.;Yao,H.;Huo,Z.;Li,Y.;Zhang,K.;Zhu,S.;Wei,H.;Xu,W.;etal.DeepRedEmissiveCarbonizedPolymerDotswithUnprecedentedNarrowFullWidthatHalfMaximum.Adv.Mater.2020,32,1906641.(7)Ding,H.;Wei,J.-S.;Zhong,N.;Gao,Q.-Y.;Xiong,H.-M.HighlyEfficientRed-EmittingCarbonDotswithGram-ScaleYieldforBioimaging.Langmuir2017,33,12635−12642.(8)Lu,S.;Sui,L.;Liu,J.;Zhu,S.;Chen,A.;Jin,M.;Yang,B.Near-InfraredPhotoluminescentPolymer-CarbonNanodotswithTwo-PhotonFluorescence.Adv.Mater.2017,29,1603443.(9)Wang,B.;Li,J.;Tang,Z.;Yang,B.;Lu,S.Near-infraredEmissiveCarbonDotswith33.96%EmissioninAqueousSolutionforCellularSensingandLight-EmittingDiodes.Sci.Bull.2019,64,1285−1292.(10)Jiang,L.;Ding,H.;Xu,M.;Hu,X.;Li,S.;Zhang,M.;Zhang,Q.;Wang,Q.;Lu,S.;Tian,Y.;etal.UV-Vis-NIRFull-RangeResponsiveCarbonDotswithLargeMultiphotonAbsorptionCrossSectionsandDeep-RedFluorescenceatNucleoliandinVivo.Small2020,16,2000680.(11)Chao,D.;Lyu,W.;Liu,Y.;Zhou,L.;Zhang,Q.;Deng,R.;Zhang,H.Solvent-dependentCarbonDotsandTheirApplicationsintheDetectionofWaterinOrganicSolvents.J.Mater.Chem.C2018,6,7527−7532.(12)Tian,Z.;Zhang,X.;Li,D.;Zhou,D.;Jing,P.;Shen,D.;Qu,S.;Zboril,R.;Rogach,A.L.Full-ColorInorganicCarbonDotPhosphorsforWhite-Light-EmittingDiodes.Adv.Opt.Mater.2017,5,1700416.(13)Li,D.;Jing,P.;Sun,L.;An,Y.;Shan,X.;Lu,X.;Zhou,D.;Han,D.;Shen,D.;Zhai,Y.;etal.Near-InfraredExcitation/EmissionandMultiphoton-InducedFluorescenceofCarbonDots.Adv.Mater.2018,30,1705913.(14)Ding,H.;Wei,J.-S.;Zhang,P.;Zhou,Z.-Y.;Gao,Q.-Y.;Xiong,H.-M.Solvent-ControlledSynthesisofHighlyLuminescentCarbonDotswithaWideColorGamutandNarrowedEmissionPeakWidths.Small2018,14,1800612.(15)Li,Y.;Bai,G.;Zeng,S.;Hao,J.TheranosticCarbonDotswithInnovativeNIR-IIEmissionforinVivoRenal-ExcretedOpticalImagingandPhotothermalTherapy.ACSAppl.Mater.Interfaces2019,11,4737−4744.(16)Liu,K.-K.;Song,S.-Y.;Sui,L.-Z.;Wu,S.-X.;Jing,P.-T.;Wang,R.-Q.;Li,Q.-Y.;Wu,G.-R.;Zhang,Z.-Z.;Yuan,K.-J.;etal.Efficient611https://dx.doi.org/10.1021/acs.jpclett.0c03383J.Phys.Chem.Lett.2021,12,604−611

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭