E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface

E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface

ID:81816647

大小:5.93 MB

页数:12页

时间:2023-07-21

上传者:U-14522
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第1页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第2页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第3页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第4页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第5页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第6页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第7页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第8页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第9页
E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface_第10页
资源描述:

《E ff ect of Sodium Dodecyl Sulfonate on the Foam Stability and Adsorption Con fi guration of Dodecylamine at the Gas − Liquid Interface》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleEffectofSodiumDodecylSulfonateontheFoamStabilityandAdsorptionConfigurationofDodecylamineattheGas−LiquidInterfaceXimeiLuo,QiqiangLin,ShumingWen,YunfanWang,*HaoLai,LinpingQi,XuetongWu,YongfengZhou,andZhenguoSongCiteThis:Langmuir2021,37,1235−1246ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Inthisstudy,theeffectofsodiumdodecylsulfonate(SDS)onthefoamstabilityofdodecylamine(DDA)andonitsadsorptionconfigurationatthegas−liquidinterfacewasinvestigated.Frothstabilityexperiments,surfacetensionmeasurements,time-of-flightsecondary-ionmassspectrometrymeasurements,andmoleculardynamicssimulationcalculationswereperformedinthisinvestigation.TheresultsrevealedthatthefoamstabilityofDDAsolutionwasextremelystrong,andtheadditionofSDScoulddecreasethefoamstabilitywhentheconcentrationofDDAwaslessthanacertainvalue.Thedecreaseinfoamstabilitycouldbeascribedtoseveralreasons,namely,thebigcross-sectionalareaofSDSatthegas−liquidinterfaceandlowadsorptioncapacityofsurfactantsatthegas−liquidinterface,thehighsurfacetension,thechangeinthedouble-layerstructure,thesmallthicknessofthegas−liquidinterfaciallayer,theweakinteractionintensitybetweentheheadgroupsofthesurfactantsandthewatermolecules,thestrongmovementabilityofthewatermoleculesaroundtheheadgroups,andthesparseandlessuprightarrangementconfigurationofmoleculesatthegas−liquidinterface.ThesefindingscangreatlyhelpinsolvingthestrongfoamstabilityprobleminDDAflotationandprovideamethodforreducingfoamstability.18−24■INTRODUCTIONsurfactantactivityandleadtoanobvioussynergisticeffect.Foralongtime,scholarsbelievedthatanionicandcationicFoamisakindofdispersionsystemwithnumerousbubblesdispersedintheliquidcontinuousphase.Thissystemisasurfactantscannotbecombinedbecauseoftheriskofthermodynamicallyunstablesystemwithatendencytodecreaseprecipitationorinstability.However,recentstudiesconfirmedtheboundareaandsurfaceenergyspontaneously.1Foamisthatmixedsurfactantspossessnumerousexcellentproperties,extensivelyusedinseveralfields,suchasthedailychemicalincludingeffectivedecontamination,solubilization,satisfactoryDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at10:42:44(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.25−28industry,food,mineralflotation,metallurgy,firefighting,andoilfoamperformance,andefficientdisinfection.Mixedmining.Foamstabilityisanimportantconceptinfoamresearchsurfactantsarenowbroadlyusedbecauseoftheirstrong29−34andakeyfactorinfoamapplications.Foamhasvarioussynergisticeffect.First,thestrongelectrostaticinteractionadvantagesanddisadvantages.Thebenefitsofusingfoamarebetweenanionicandcationicsurfactantsgreatlyreducestheprominentinthefieldsofmineralprocessing,soapindustries,absorptionfreeenergyofeachcomponentinthemixedsystem,andfirefighting,whereasitsharmfuleffectsarenoticeableintherebyimprovingthesurfaceactivity.Second,theionscanbesolutionconcentrationandvacuumdistillationprocesses.replacedwithsurfaceactiveionswithoppositechargestoreduceTherefore,foamstabilityshouldberegulatedandthestabilitytheelectrostaticrepulsion,andthehydrocarbonchainarrange-mechanismshouldbeanalyzed.mentiscompact.Last,thehydrophobicgroupsofthecationicDodecylamine(DDA)isusedasacationiccollectorfor2−4silicates,oxidizedminerals,andcarbonateminerals.Cationicflotationhasseveraladvantages,includingasimplereagentReceived:November10,2020regime,lowcost,andlowtemperaturerequirement.2,5−12Revised:January4,2021However,theextremelyhighfoamstabilityisamajorproblemPublished:January12,202113−17associatedwithDDAapplicationsinflotation.Therefore,theissueoffoamstickinessofDDAhasreceivedconsiderableattention.Mixedanionic−cationicsurfactantscanimprovethe©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c032481235Langmuir2021,37,1235−1246

1Langmuirpubs.acs.org/LangmuirArticle63,64andanionicsurfactantscanactwitheachotherandthusgreatlyobtainexperimentally.IthasbeenproventhattheSandwich65−68enhancetheassociationbetweenthetwosurfactants.Asaresult,modelisfeasibletostudythegas−liquidinterface.themixedsurfactantscaneasilyadsorbattheinterfaceandHowever,thesimulationcalculationresultsshouldbecombinedsurface,formmicellesinthesolution,andshowahighsurfacewithotherexperimentaldataordetectionmethodsbecauseactivity.Nonetheless,thecationicsurfactantsmixedwithsimulationcalculationalonecannotfullysimulatearealsolutionanionicsurfactantsarerarelyusedtoregulatethefoamstability,environment.Time-of-flightsecondary-ionmassspectrometryandtheunderlyingmechanismisnotthoroughlyexplored.The(ToF-SIMS)isasurfaceanalysistechniquewithextremelyhighcommonmethodsforadjustingfoamstabilityincludephysicalresolution.Itcancollectandanalyzethesecondaryions35,36andchemicalapproaches.Examplesofphysicalmethodsareremovingfromthesurfaceafterbombardmentbyprimary-ion69fluidinjection,static,ultrasonic,heatingorpressure,mechanicalbeams.Additionally,itcanobtaintheinformationofagitation,anddecompression(vacuumextraction)methods.individualelementsandmolecularspeciesaswellashaveanFluidinjectionisthecommonlyusedphysicalmethodforinsightintobindingphenomena,molecularorientation,and70,71defoaminginflotation.However,thistechnologyisinsufficient,configurationinformation.Thus,ToF-SIMScanprovideaisinefficient,wastesalargeamountofwaterresources,andnewwaytoinvestigatethemicro-configurationofthegas−liquiddilutesthepulp.Thechemicalapproachesincludechemicalinterface.Moreover,thecombinedapplicationofthetworeactionanddefoameradditionmethods.Thechemicalreactionmethods(MDsimulationandToF-SIMS)isveryrare.methodproducesinsolublesubstances,whichareharmfultotheInthispaper,theeffectofsodiumdodecylsulfonate(SDS)onequipment.AlthoughdefoameradditionisaconvenientthefoamstabilityofDDAandonitsadsorptionconfigurationatapproach,thismethodhasalowdefoamingefficiencyandthegas−liquidinterfacewasinvestigated.Frothstabilityhighconditionrequirement.Inaddition,thistechniquemainlyexperiments,surfacetensionmeasurements,ToF-SIMSmeas-involvesthefoamproductafterflotation,anditcannotsolvetheurements,andMDsimulationswereperformedinthisproblemscausedbyfoamstickinessduringflotation(e.g.,investigation.ThisstudycombinesToF-SIMSmeasurementsentrainment).Comparedwithotherapproaches,themethodofandMDsimulationcalculationstoobtainthestructuraladjustingthefoamstabilitybyusingamixedcationic−anionicinformationattheatomiclevelandthemicro-configurationofsurfactantnotonlydirectlyadjuststhefoamstabilityduringthesurfactantsatthegas−liquidinterfacetheoreticallyandflotationbutalsoimprovestheflotationefficiencyandproductexperimentally.TheresultspresentusefulknowledgeonhowtoqualityduetothesynergisticeffectofthecombinationofsolvetheproblemofstrongfoamstabilityinDDAflotation,cationicandanioniccollectors.Theresultsofourpresentstudyprovideatheoreticalbasistoguidethedesignofamineindicatethatinthereverseflotationofhematitebyusingcationicsurfactants,andintroduceamethodfordecreasingfoamandanionicsurfactants,theflotationindexishigh,andthestability.inhibitordosageislow.Therefore,investigatingthepropertiesofmixedcationicandanionicsurfactantsisessentialtoregulate■MATERIALSANDMETHODSfoamstability.Reagents.Analytical-gradeDDAwasdissolvedindistilledwaterbyManyresearchersinvestigatethemechanismoffoamstability.adding50%(moleratio)aceticacid;thissampleislabeledasDDA.Theymostlyfocusedonthedynamics,involvingtheformationAnothersetofanalytical-gradeDDAwasdissolvedwithoutaceticacidofliquidfilmsandfoams,drainingfluidsoffoam,liquidfilmindistilledwaterat50°ConahotplateandlabeledasDDA(noAA).rupture,coarseningofbubbles,andinteractionbetweenUnlessspecifiedotherwise,“DDA”referstothesampledissolvedwith37−4037aceticacid.Analytical-gradeSDSwasdissolveddirectlyindistilledparticlesandbubbles.Listatedthatfoamdecayisaffectedbytwodrainageprocesses,namely,thethermodynamicwater.Analytical-gradehydrochloricacid(HCl)wasusedasapHdrainageoftheliquidfilmandthegravitydrainageintheplateauregulator.Deionizedwaterwasusedinallexperiments.border.Forthegravitydrainageintheplateauborder,(1)thegreaterthewatercontentinthefoam,thefasterthedrainage■METHODSspeed;(2)thegreatertheviscosityoftheliquid,theslowertheFrothStabilityExperiment.Thefrothstabilitywasevaluatedbydrainagespeed;and(3)thelowerthesurfacetensionoftheaeration.TheeffectofbothDDAandSDSconcentrationsaswellasliquid,theslowerthedrainagespeed.Severalstudiesalsotheirweightratioonfoamstabilitywasinvestigated.TheDDA(orreportedtheeffectsofvariousfactors,suchasinorganicSDS)solutionswithdifferentconcentrations(0.05,0.1,0.2,0.4,and1.0salts,41−45concentrationandtypesofsurfactants,46−49temper-wt%)wereprepared.Moreover,theweightconcentrationofDDAwithature,50particlesize,51,52hydrogenbonding,53andmoisture,54aceticacidwasfixedat0.2wt%,andthen,thecorrespondingSDSwasonfoamstability.DespitetheexistenceofextensiverelatedaddedaccordingtotestdesignbeforeregulatingthepHat4.ThemixedsolutionswithdifferentweightratiosofDDA:SDSwereprepared.research,thestudiesthatcoverthemicro-configurationoftheAfterward,thesolutionpreparedwithavolumeof200mLwasinjectedgas−liquidinterfaceanditsrelationshipwithfoamstabilityareintoanorganicglasstubeandaeratedfor10satanaerationrateof300scarce.mL/min.Finally,themaximumfoamheightwasrecordedafterNowadays,severalmethodsfortheconfigurationstudyofstandingfor10s.Thetimewhenthemaximumfoamheightdecreasedsurfactantsatthegas−liquidinterfacehavebeenreportedinthetohalfwasdefinedasthehalf-lifeperiod,whichwasusedtoinvestigate55−62thefoamstability.Thetestsunderthesameconditionswereconductedliterature,includingsurfacetensiontesting,X-rayreflec-tion,small-angleneutronscattering,neutronreflectivity,andthreetimes.vibrationalsum-frequencyspectroscopy.Nevertheless,theseSurfaceTensionAnalysis.AKRUSSsurfacetensionmeterwastraditionalexperimentalmethodssofar,however,sufferfromadoptedtomeasurethesurfacetension.Thesurfacetensionsofsolutionspreparedweremeasured.Thetestsunderthesameconditionsthefactthattheyaredifficulttopresentthemicro-configurationweredonethreetimes.Themeasuredtemperaturewasmaintainedatofsurfactantsatthegas−liquidinterface.Severalstudieshaveabout25°C.revealedthatthemoleculardynamics(MD)simulationToF-SIMSAnalysis.ToF-SIMSanalysis(IONTOFGmbH,technologycanobtainthestructureinformationanddynamicMünster,Germany)wasadoptedtocharacterizethegas−liquidsurfaceinformationofthegas−liquidinterface,whichisdifficulttoofdifferentsurfactantsolutions.1236https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

2Langmuirpubs.acs.org/LangmuirArticleDifferentsurfactantsolutionswereinjectedintoindividualopenglass(RDF),andthediffusioncoefficient(DC)ofwatermoleculesinthetankswithdimensionsofapproximately14×12×2mm3andfrozenatfirsthydrationlayerwereanalyzedusinganalysistoolsintheForcite−120°Cbyusingliquidnitrogenbeforetesting.TheToF-SIMSmodule.TheaverageanglesbetweenthemolecularchainsofDDA(orspectralacquisitionwasconductedwithin30minofthesampleSDS)andtheZ-axiswereinvestigatedusingscriptanalysis.Allpreparation.calculationswereperformedwiththeForciteprograminMaterials74AToF-SIMSVinstrumentwasusedtoobtainthedepthprofilesofStudio2017.COMPASSwasselectedastheforcefield,Smartmultilayerfilms.TheinstrumentequippedwithaBiandoxygenclusterMinimizerwasusedforgeometricaloptimization,andtheNVTiongunwasoperatedinthedual-beammode.A500eVoxygenclusterensemblewasusedtolimittheMDsimulationcalculation.Theionbeamwasusedforsputtering,anda30keVBi+analysisbeamwas3temperaturewascontrolledat298KusingtheAndersencontrolusedtoanalyzethecentralregionbetweenthesputteringpulses.method.TheEwaldmethodandatombasemethodwereusedtoMoreover,anelectronfloodgunwasadoptedforthechargecalculatetheelectrostaticandintermolecularinteractions,respectively.compensation.ThesamplewasexaminedwithaCs+ionbeamrasteredThetotalsimulationtimewas2000ps;thetimestepwas1fs,andoneovera400×400μm2areaandaBi+beamrasteredovera100×1003framewasoutputtedevery1000steps.μm2area;therasteringwasperformedinarandommodeovera256×256pixelareaandwasstoppedafter35s.Dataacquisitionandthe■subsequentdataprocessandanalysiswereperformedusingSurfaceLabRESULTSANDDISCUSSION6(IONTOF).FrothStability.TheeffectsofDDAandSDSconcentrationsComputationDetails.Inthispaper,thegas−liquidinterfaceofandtheirweightratiosonfoamstabilitywereinvestigated.foamwasstudiedusingtheSandwichmodel.CHNH+(Figure1a)12253Figure2ashowsthefrothhalf-lifeperiodofthesurfactantsasafunctionofDDAandSDSconcentrationsatpH4.Thefrothhalf-lifeperiodofDDAandSDSincreasesinitially,thenreachesthemaximumwhentheconcentrationisupto0.2wt%,andfinallydecreasesastheconcentrationfurtherincreases.Thefrothhalf-lifeperiodofDDAsignificantlyincreasesfrom981to2100min,andthatofSDSconsiderablyenhancesfrom298to860min,whentheconcentrationincreasesfrom0.05to0.2wtFigure1.Structuresoftheresearchobjects:(a)CHNH+and(b)%.Thefrothhalf-lifeperiodofDDAislongerthanthatofSDS;12253CHSO−.12253thefrothhalf-lifeperiodsofDDAandSDSataconcentrationof0.2wt%are2100and860min,respectively.andCHSO−(Figure1b)molecules,watermolecules,andAfterfixingtheconcentrationofDDAat0.2wt%,the12253counterions(CHCOO−andNa+)wereconstructedbyusingthecorrespondingSDSwasaddedinaccordancewithdifferent3SketchtoolinMaterialsStudio2017,andtheirchargedistributionandweightratios(DDA:SDS).TheeffectofSDSonthefrothhalf-preliminaryoptimizationwereconducted,respectively.ThestructureslifeperiodoftheDDAsolutionwasinvestigated.Figure2boftheresearchobjectsareshowninFigure1.indicatesthatwhentheDDAconcentrationislessthanacertainTheamorphouscellconstructiontoolandthebuildlayerstoolwerevalue,theadditionofSDScandecreasethefrothhalf-lifeperiodusedtoconstructthegas−liquidinterfaceoftheSandwichmodel.The−+ofthesolution.ThehighertheproportionofSDS,thelowerthecounterionsCH3COOandNa,whosenumberswerethesameas+−foamstabilityofthesolution.Inaddition,thefoamofthemixedthoseofC12H25NH3andC12H25SO3,respectively,wereaddedtothewaterboxrandomlytomaintaintheelectricalneutralityofthesystem.surfactantislessstablethanthatofthesinglesurfactant(DDAorTheoptimizedDDAs(orSDSs)wereplacedsymmetricallyontheSDS)whentheDDAconcentrationislessthanacertainvalue.interfaceofthewaterlayer.AllthecarbonchainsofDDA(orSDS)Figure2presentsthemaximumhalf-lifeperiodsofthemoleculeswereparalleltotheZ-axis.Thethicknessofthewaterlayerdifferentsolutions(DDA,SDS,andDDA+SDS).Similartrendswasatleast2nm,72,73whereasthatoftheselectedwatermoleculeswas75−78havebeenreportedfordifferenttypesofsurfactants.Before3.5nm.Thenumberofwatermoleculesaddedwas1000.Thedistancereachingthecriticalmicelleconcentration(CMC),asthebetweenthemonolayerandwaterwasmaintainedwithin0.2nm.A30surfactantconcentrationincreases,thesurfaceadsorptionÅvacuumlayerwasaddedtothemodelalongtheZ-axistoreducethecapacityincreases,thesurfacetensionsignificantlydecreases,periodicboundaryeffect.andcompactnessofthemoleculararrangementincreases.TheForcitemodulewasusedtooptimizethegeometricstructureofthemodelabove-mentioned,andthen,MDsimulationwascarriedoutConsequently,thefoamstabilityisenhanced.Moreover,bubblefortheoptimizedmodeltoobtaintheequilibriumconfiguration.Thecoalescenceisreducedandinterfacialelasticityisincreasedrelativeconcentrationdistributions,theradialdistributionfunctionbecauseofthestabilizationoffoamlamellaebymoleculesoftheFigure2.(a)Frothhalf-lifeperiodasafunctionofDDAandSDSconcentrationsand(b)effectofSDSonthefrothhalf-lifeperiodofDDAatpH4.1237https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

3Langmuirpubs.acs.org/LangmuirArticleFigure3.Surfacetensionsofthe(a)DDA,(b)SDS,and(c)DDA+SDSsolutionsand(d)theirbubblesizes.79surfactant.However,theincreaseinfoamstabilityisfoundshowsthattheCMCofthemixedsurfactantis0.4wt%,whichisonlyuptoaspecificconcentration.AfurtherincreaseinhigherthanthatofDDA.ThisincreaseinCMCmightcausethe76maximumhalf-lifeperiodtodeclineandshiftstoahigherDDAsurfactantconcentrationincreasesthecollapserateoffoam.ThedecreaseinfoamstabilityatsurfactantconcentrationsconcentrationwiththeincreaseintheratioofSDSintheDDA+abovetheCMCcanbeattributedtotheformationofmolecularSDSsolution(Figure2b).aggregates(micelles)attheCMCofthesurfactant.WangandTheamountofexcesssubstanceonthesurfacecanbeMulligan77,78relatedthedecreaseinstabilityoffoamathigherdeterminedusingtheGibbsadsorptionisothermequationconcentrations(>CMC)withtheincreasedweight(gravita-(Formula1).Thecross-sectionalarea(CSA)oftheadsorbed1tionaleffect)offoambecauseofexcessmoleculesofthemoleculesiscalculatedusingFormula2basedontheresultssurfactantatthelamella.BecauseoftheexcessofthesurfactantpresentedinFigure3a,b.ThefindingsrevealthattheCSAofSDS(2.61nm2)atthegas−liquidinterfaceislargerthanthatofmolecules,theimpactofgravitationonthedrainageoffoamDDA(1.39nm2).Thisresultisconsistentwiththemolecularincreased,whichresultedincontinuousliquiddrainagefromthefilmformedbetweenadjacentbubbles,eventuallyrupturingtheresultsobtainedfromthestructuraloptimizationinMaterialsliquidfilmstoresultinbubblecoalescence.80Beheraetal.81alsoStudio(Figure2).ThisfindingalsoexplainswhytheCMCofsuggestedthattherateofcollapseincreasedathigherDDAishigherthanthatofSDSconcentrationsduetoadecreaseinlamellaelasticitywhichcijjdσyzzdecreasedwithanincreaseinsurfactantconcentrationandledtoΓ=−jzRTkdc{T(1)fastfoamcollapse.Moreover,Figure2bshowsthatthemaximumhalf-lifeperioddecreasesandshiftstoahigherwhereΓistheamountofexcesssubstanceonthesurface,mol·DDAconcentrationwiththeincreaseintheratioofSDSinthem−2;cistheconcentration,mol/L;Risthegasconstant,8.314DDA+SDSsolution.ThisphenomenoncanbeattributedtothePa·m3/mol·K;andTisthethermodynamictemperature,KincreaseinCMCduetotheincreaseintheratioofSDS(Figure13c).Figure3cindicatesthattheCMCofthemixedsurfactantA=(DDA/SDS=1:0.25)is0.4wt%.Moreover,thefoamofthisΓ∞NA(2)mixedsurfactantexhibitsamaximumhalf-lifeperiodatthiswhereAistheCSAofadsorbedmolecules,m2;Γistheamount∞concentration.ofexcesssubstanceatasaturatedsurface,mol·m−2;andNistheASurfaceTensionandCross-SectionalAreaoftheAvogadroconstant,6.02×1023.AdsorbedMolecules.ThesurfacetensionsasafunctionofThesurfacetensionsofdifferentsolutionsatpH4areshownDDAandSDSconcentrationsaredepictedinFigure3a,b.TheinFigure3d.WhentheDDAconcentrationisfixedat0.2wt%,surfacetensiondecreasesinitiallyastheDDA(orSDS)theadditionofSDS(DDA/SDS=1:0.25)canimprovetheconcentrationincreases,thenreachesaminimum,andfinallysurfacetensionofthesolutionfrom24.81to27.39mN/m.increasesslightlyastheconcentrationfurtherincreases.ItMoreover,thesurfacetensionofSDSishigherthanthatofreachestheminimumwhentheconcentrationsofDDAandSDSDDA,whichmaybetheoneofthereasonswhySDSfoamislessreach0.2and0.1wt%,respectively.TheseresultsindicatethatstablethanDDAfoam(Figure1a).Inaddition,thefoamsinthetheCMCsofDDAandSDSare0.2wt%(1.1×10−2mol/L)SDS,DDA,andDDA+SDSsolutionswereexaminedusingaand0.1wt%(0.35×10−2mol/L),respectively.Liuetal.82microscopeunderthesamemagnification,andtheaveragereportedthattheCMCofDDAis1.2×10−2mol/L.Figure3cnumbersandsizesofbubblesweremeasuredusingImage-J1238https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

4Langmuirpubs.acs.org/LangmuirArticleFigure4.NormalizedpeakintensitieswithP=95%confidenceintervalsfromthe(a)positiveionand(b)negativeionsofdifferentsolutionsfrozenat−120°Cbyusingliquidnitrogen.software.TheorderofaveragebubblenumbersisDDA>DDAmainlycausedbythefactthattheCSAofSDSistwicelarger+SDS>SDS,andtheorderofaveragebubblesizesisDDADDA+SDS>DDA(noAA).velocity.DifferenttypesofsurfactantshavebeenexaminedbyAddingSDStotheDDAsolutionwilllessentheadsorptionof85Sardeingetal.,andtheyobservethatthebubblediameterDDAmoleculesatthegas−liquidinterface.Theresultsareindecreasesfromwatertoanionic,tocationic,andthentonon-goodagreementwiththesurfacetensionresults.ionicsurfactants.ThebubblesizesandthesurfacetensionFigure4bshowsthenormalizedpeakintensitieswithP=95%resultswehaveobtainedareconsistentwiththeseresultsabove-confidenceintervalsfromthenegativeionofdifferentsolutionsmentioned.frozenat−120°Cbyusingliquidnitrogen.AscanbeseenfromToF-SIMSanalysis.ToclearlydepictthedifferenceoftheFigure4b,theionsignalsofCH−,CN−,andCNO−weregas−liquidinterfacebetweenDDA+SDSandDDAandobservedatthegas−liquidinterfaceintheDDA(noAA),DDA,illustratetheeffectofSDSonthegas−liquidinterfaceoftheandDDA+SDSsolution.Thesepeaksarealsothefingerprintlatter,theDDAwithoutaceticacid[DDA(noAA)]wasalsopeaksofDDA.Inaddition,theionsignalsofO−,OH−,HO−,22analyzedusingToF-SIMS.ThesamplesanalyzedthroughToF-HO−,HO−,HO−,HO−,HO−,HO−,HO−,HO−,2232435344647484SIMSincludeDDA(noAA)(pH4,weightconcentration=HO−,HO−,HO−,andHO−wereobserved.Thesepeaks946585950.2%),DDA(pH4,weightconcentrationofDDA=0.2%,arethefingerprintpeaksofwater.Moreover,theionsignalsofconcentrationofaceticacid=1.1×10−2mol/L),andDDA+CHSO−andCHSO−werefoundatthegas−liquid1225414294SDS(pH=4,weightconcentrationofDDAandSDS=0.2%+interfaceintheDDA+SDSsolution.Thisfindingindicatesthat0.05%,concentrationofaceticacid=1.1×10−2mol/L).theSDSmoleculescanalsoadsorbatthegas−liquidinterfaceToF-SIMSSpectraAnalysis.Figure4ashowstheafteraddingSDStotheDDAsolution.TheadsorptionofSDSnormalizedpeakintensitieswithP=95%confidenceintervalsmoleculeswithaCSAthatisapproximately2timeshigherthanfromthepositiveionofdifferentsolutionsfrozenat−120°CbythatofDDAmoleculescausessomeofthelattertoentertheusingliquidnitrogen.TheionsignalsofNH+,CHN+,CH+,solutionandformmicelles,therebyreducingtheadsorption4425CH+,CH+,CHN+,CHN+,CHN+,CHN+,andcapacityoftheDDAmoleculesatthegas−liquidinterface.49373681810221227CHN+wereobservedonthegas−liquidinterfaceinDDAWhat’smore,itisfoundthatcomparedwiththeDDAandDDA1228(noAA),DDA,andDDA+SDSsolution.Thesepeaksarethe+SDSsolutions,DDAmulti-molecularpeaks(CHN−,14302fingerprintpeaksofDDA.TheorderofpeakintensityrelatedtoCHN−,andCHN−)intheDDA(noAA)solutionwere1432214332DDAisDDA>DDA+SDS>DDA(noAA).Thisfindingclearlyobservedatthegas−liquidinterface,indicatingthatDDAimpliesthattheDDAadsorptioncapacityatthegas−liquidwithoutaceticacidcannoteasilyinteractwithwater,whichareinterfaceisweakwithoutaceticacid;theadditionofaceticacidislikelytounitetogether.Inaddition,theCHNO−and2beneficialtotheadsorptionofDDAattheinterface.Moreover,CHNO−signalionpeakswerefoundatthegas−liquid5132theresultsindicatethataddingSDStotheDDAsolutionwillinterfaceoftheDDAsolutionwithaceticacid.ThetwosignallessentheadsorptionofDDAatthegas−liquidinterface.InionpeaksarecausedbythestronginteractionbetweenDDAandaddition,theionicpeakintensityassociatedwithDDAintheaceticacidaftertheadditionofthelatter,whichresultsintheDDAsolutionistwicethatintheDDA+SDSsolution(FigureformationofCOO···NHandCOO···4a).ThisfindingindicatesthattheadsorptioncapacityofDDANH3CH2CH2CH2CH2CH2.ThetwoionicpeakswerehardlyintheDDAsolutionisroughlytwicethatintheDDA+SDSobservedatthegas−liquidinterfaceoftheDDA(noAA)andsolution.TheseresultsillustratethatwhentheDDADDA+SDSsolutions.ThisfindingsuggeststhataddingSDStoconcentrationisfixed,theadditionofSDSwillcausethehalftheDDAsolutionwithaceticacidcanreducetheadsorptionofofDDAmoleculestomigratetothesolutionandformmicelles.CHCOO−ionsatthegas−liquidinterface.Suchareduction3AccordingtotheresultsoftheadsorptionmolecularCSA,thisiscanbeascribedtothestrongelectrostaticinteractionbetween1239https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

5Langmuirpubs.acs.org/LangmuirArticleFigure5.(a)ScoresonPCs1and2andloadingsfor(b)PC1and(c)PC2fromthePCAofthepositive-ionspectraofdifferentsolutionsfrozenat−120°Cbyusingliquidnitrogen.Figure6.DepthprofileoftheDDAsolutionswithandwithoutaceticacidfrozenat−120°Cbyusingliquidnitrogen:(a)positiveionand(b)negativeion.SDSandDDA,whichinhibitstheinteractionbetweenDDAandPC1isthemaindistinctionbetweentheBsampleandotherCHCOO−andcausessomeCHCOO−ionstomigratefromsamples(AandC).ThepeaksCHN+,CHN+,andCHN+331228425theinterfacelayertotheliquidphase.Thisphenomenonresults(positivePC1loadings),whicharerelatedtoDDAmolecules,inthedecreaseinCHCOO−ionsatthegas−liquidinterface.areattributedtoDDAwithaceticacidatpH4(positivePC13TheCHCOO−ionsatthisinterfacecanformadoubleelectricscores),whilethepeaksOH+,OH+,OH+,OH+,and3254937511layerwiththesurface.Whentheliquidfilmbecomesthin,theHO+(negativePC1loadings),whicharecorrelatedtothewater3mutualrepulsionforcebetweenitstwosurfacesweakens.Thismolecules,areassignedtoothersamples(negativePC1scores).phenomenonisnotconduciveinpreventingtheliquidfilmfromThePC1loadingsreflectthenegativecorrelationbetweenthethinningfurtheranddecreasesthefoamstability.Theseresultswater-relatedpeaksandDDAspecies-relatedpeaks.Meanwhile,corroboratewellwiththefoamstabilityresults.inthescoreplot,theCsample[c(DDA)=0.2wt%]hasthePositive-andNegative-IonSpectraAnalysisthroughmaximumpositivePC1score.Therefore,theresultsofPC1PrincipalComponentAnalysis.Figure5showsthescoresindicatethattheorderoftheDDAadsorptioncapacityattheandloadingsfromtheprincipalcomponent(PC)analysisgas−liquidinterfaceisDDA(noAA)

6Langmuirpubs.acs.org/LangmuirArticleFigure7.DepthprofileoftheDDAandDDA+SDSsolutionsfrozenat−120°Cbyusingliquidnitrogen:(a)positiveionand(b)negativeion.Figure8.RelativeconcentrationsofdifferentcomponentsalongtheZ-axis:(a)DDA,(b)SDS,and(c)DDA+SDS.interfacetendstobelessuprightafteraddingSDStotheDDAOH−ionpeakintensityrelatedtowaterinDDAsolutionswithsolution.ThisspeculationwillbeverifiedthroughMDandwithoutaceticacidgraduallyincreasesasthesputtertimesimulation.increases.FortheDDAsolutionwithaceticacid,theCHNO−2DepthProfilingAnalysis.TheDDAsolutionswithandandCHNO−ionpeakintensitiesgraduallydecreaseasthe5132withoutaceticacidfrozenat−120°Cbyusingliquidnitrogensputtertimeincreases,whereastheCHN−ionpeak14322weresubjectedtodepthprofiling.Thedepthprofileresultsofintensityisextremelylowanddemonstratesaminimalchange.DDAsolutionsfrozenbyusingliquidnitrogenareshowninFortheDDAsolutionwithoutaceticacid,theCHNO−and2Figure6.−+++C5H13NO2ionpeakintensitiesareextremelylowandexhibitaTheintensitiesoftheC2H5,C12H27N,andC12H28Nionminimalchangewiththeincreaseinsputtertime,whereasthesignals,whichareknownasthemarkersofDDA,decreasefirst−C14H32N2ionpeakintensitydemonstratesagradualdecline.andthenslightlychangeasthesputtertimeincreases(Figure+Theseresultsfurthersupporttheinferencethattheadsorption6a).Moreover,theintensityoftheCsO2H4ionsignalrelatedtocapacityofDDAatthegas−liquidinterfaceoftheDDAsolutionwaterincreasesfirstbeforedisplayingnosignificantchange.withoutaceticacidisweak.Moreover,thesemoleculescannotComparedwiththeDDAsolutionwithaceticacid,theintensitiesoftheionpeaksrelatedtoDDAintheDDAsolutioneasilyinteractwithwaterandarelikelytoagglomeratetogetherwithoutaceticacidarelow,whereasthoseoftheionpeaksduetotheattractiveforcesamongtheDDAmolecules.Afterrelatedtowaterarehigh.ThisresultsuggeststhatwithoutaceticaddingaceticacidtotheDDAsolution,astronginteractionacid,theDDAmoleculescannoteasilyadsorbatthegas−liquidbetweenDDAandaceticacidoccurs,andtheadsorptioninterface.capacityofDDAatthegas−liquidinterfacesubsequentlyFigure6bshowsthenegative-ionpeaks(OH−,CHNO−,increases.TheconcentrationofDDAgraduallydecreasesfrom2CHNO−,andCHN−)asafunctionofsputtertime.Thethegas−liquidinterfacetothesolutionphase.5132143221241https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

7Langmuirpubs.acs.org/LangmuirArticleFigure9.(a)RDFoftheDDAandSDSheadgroupsandwatermoleculesand(b)MSDofwatermoleculesinthefirsthydrationlayer.Figure7showsthedepthprofileresultsoftheDDAandDDAFigure8billustratesthatSDScanassembleatthegas−liquidinterface,thepolarheadgroups(−SO−)areimmersedinthe+SDSsolutionsfrozenat−120°Cbyusingliquidnitrogen.3Figure7aillustratesthattheintensitiesoftheCHN+andaqueousphase,andmostcarbonchainsarefoundinthegas1227+phase.Inaddition,thecounterions(Na+)mostlygatheraroundC12H28Nionpeaks,whicharerelatedtoDDA,decreasefirstandthenslightlychangewiththeincreaseinthesputtertime.theheadgroupsofSDSowingtotheelectrostaticinteractionbetweenthecounterions(Na+)andheadgroups(−SO−).ThepeakintensitiesrelatedtoDDAintheDDA+SDSsolution3arelowerthanthoseintheDDAsolution.Incontrast,thepeakFromFigure8c,itcanbeseenthatDDAandSDScanintensitiesrelatedtowaterintheformerarehigherthanthoseinassembleatthegas−liquidinterface.Additionally,thepolarheadgroups(−NH+and−SO−)areimmersedintheaqueousthelatter.ThisresultshowsthataddingSDStotheDDA33solutioncanreducetheadsorptioncapacityofDDAatthegas−phase,andmostcarbonchainsarefoundinthegasphase.liquidinterface.Moreover,comparedwiththeresultsfromFigure8a,b,itisThenegative-ionpeaks(OH−,CHNO−,CHNO−,andfoundthatafteraddingSDStotheDDAsolution,most25132−+CHSO−)asafunctionofsputtertimearedepictedinFigureCH3COOandNamovefromtheinterfacetothesolution.122547b.TheOH−ionpeakintensityrelatedtowaterintheDDAandThisresultissupportedbyToF-SIMSresults.TheseresultsDDA+SDSsolutionsgraduallyincreasesasthesputtertimeabove-mentionedindicatethattheadditionofSDStotheDDAincreases.Withtheincreaseofthesputtertime,theCHNO−solutioncangreatlyreducetheadsorptionofcounterions2−+andCHNO−ionpeakintensitiesintheDDAsolutionwith(CH3COOandNa)atthegas−liquidinterface,whichresults5132inthemovementofthesecounterionsfromtheinterfacephaseaceticaciddecreasegradually,whereasitisdifficulttofindthesetothesolutionphase.peaksintheDDA+SDSsolution.TheseresultsindicatethatWhentherelativeconcentrationofwatermoleculesgraduallyafteraddingSDStotheDDAsolution,theinteractionbetweendecreasesto0fromtheliquidphasetothegasphase,theregiontheaceticacidionandDDAisweakened.wherethewaterdensitydecreasesistheinterlayer.TheMDSimulationResults.Theresultsofsurfacetensionandinterlayerthicknessofthegas−liquidinterfaceisdefinedasToF-SIMSanalysesindicatethataddingSDStotheDDAthedistancewherethewaterdensitydecreasesfrom90to10%.solutioncanreducetheadsorptioncapacityoftheDDAThethicknessvaluesintheDDA,SDS,andDDA+SDSmoleculesatthegas−liquidinterface.WhentheDDAsolutionsare16.14,15.15,and14.07Å,respectively.Theconcentrationisfixed,theadditionofSDS(weightconcen-thicknessintheSDSsolutionissmallerthanthatintheDDAtrationratio,DDA/SDS=1:0.25=4:1;moleratio,DDA/SDS=solution,whichmightbeanotherreasonwhythefoamstability6:1)causeshalfoftheDDAmoleculestoenterthesolutiontoofthelatterishigherthanthatoftheformer(Figure1a).Informmicelles.Inthisstudy,36CHNH+representstheDDA12253addition,comparedwiththeDDAsolution,theinterlayersolution,whereas18CHNH+and6CHSO−denotethe1225312253thicknessofthegas−liquidinterfacedecreasesafteraddingSDSDDA+SDSsolution.ThecounterionsCHCOO−andNa+,3totheDDAsolutionandthusleadstoadecreaseinfoamwhosenumbersarethesameasthoseofCHNH+and12253stability.TheresultscorroboratewellwiththefoamstabilityCHSO−,respectively,areaddedtothewaterboxrandomly12253results.tomaintaintheelectricalneutralityofthesystem.InteractionbetweenSurfactantsandWaterMole-MonolayerPropertiesofDDA.Afterequilibrium,thecules.TheRDFofwatermoleculesaroundthehydrophilicrelativeconcentrationdistributionsofdifferentcomponentsheadgroupswasanalyzedtoinvestigatetheinteractionbetweenalongtheZ-axis(perpendiculartothegas−liquidinterface)arereagentandwatermoleculesandfoamstability.ItisobservedshowninFigure8.AsrepresentedinFigure8a,DDAcanfromFigure9athatthefirstobviouspeakbetweenDDAandaccumulateatthegas−liquidinterface,thepolarheadgroupswatermoleculesappearsnear3.5ÅandthatbetweenSDSand(−NH+)areimmersedintheaqueousphase,andmostcarbon3watermoleculesappearsnear4.2Å.Thisresultshowsthatachainsarefoundinthegasphaseowingtotheirstrongstronginteractionbetweentheheadgroups(−NH+or−SO−)33hydrophobicity.Additionally,thecounterions(CHCOO−)3andwatermoleculesoccurs,andahydrationlayeraroundthemostlygatheraroundtheheadgroupsofDDAduetotheirheadgroupforms.Therangewithinthepeakvalleyofthefirstsimilarpeakpositions.Theresultisduetotheelectrostatic65peakiscalledthefirsthydrationlayer.Figure9bshowstheinteractionbetweenthecounterions(CHCOO−)andhead3meansquaredisplacement(MSD)ofwatermoleculesatthefirstgroups(−NH+),resultinginthemovementofcounterions3hydrationlayerunderdifferentconditions.Themovementfromtheaqueousphasetotheinterface.abilityofmoleculesisprimarilyreflectedbytheirDCs.TheDC1242https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

8Langmuirpubs.acs.org/LangmuirArticleFigure10.(a)RDFoftheheadgroupsofthesurfactants,(b)schematicoftheanglebetweenthesurfactantmolecularchainandtheZ-axis,and(c)angleresults.Figure11.EffectofSDSonadsorptionconfigurationofDDAatthegas−liquidinterface:thegas−liquidinterfacesof(A1)DDA(withaceticacid),(B1)SDS,and(C1)DDA(withaceticacid)+SDSsolution;thefoammorphologiesof(A2)DDA(withaceticacid),(B2)SDS,and(C2)DDA(withaceticacid)+SDSsolutionatthemacrolevel.65isequalto1/6oftheslopeoftheMSDcurve.TheDCsofconditions(Figure10a)wereanalyzedtoinvestigatethewatermoleculesatthefirsthydrationlayeraroundtheheadinteractionbetweenthepolarheadgroupsofDDAandSDS.group(−NH+or−SO−)intheDDAandSDSsolutionsareTheangledistributions(Figure10c)betweentheDDA(or330.29and0.28,respectively.However,intheDDA+SDSSDS)moleculechainandtheZ-axisindifferentsurfactantsolution,theDCsofwatermoleculesaroundtheheadgroupssystemswerealsoanalyzed.Aschematicoftheanglebetween−NH+andtheheadgroups−SO−increaseto0.33and0.31,theDDA(orSDS)moleculechainandtheZ-axisisshownin33respectively.TheresultsindicatethatafteraddingSDStotheFigure10b.DDAsolution,theinteractionbetweenwatermoleculesandtheAsshowninFigure10a,theaveragedistanceamongtheNandheadgroups(−NH+or−SO−)isweakened,andtheSatomsoftheDDAandSDSheadgroups,respectively,33movementabilityofwatermoleculesaroundtheheadgroupsincreasesafteraddingSDStotheDDAsolution.Thisincreaseisstrengthened.ThesewatermoleculesareeasytoloseinthecanbeattributedtothelargerCSAofSDSatthegas−liquiddrainingfluidprocess,therebydecreasingthefrothstability.TheinterfacecomparedwiththatofDDA.Thisdiscrepancyresultsresultsareconsistentwiththeresultsoffrothstability.inadecreaseintheadsorptioncapacityoftheDDAandtotalConfigurationsofReagentMoleculesattheGas−moleculesinthegas−liquidinterfaceaswellasinarelativelyLiquidInterface.TheRDFsofNatomsintheDDAheadsparsemoleculararrangement,whichdecreasethefrothstability.groupsandSatomsintheSDSheadgroupsunderdifferentFigure10cshowsthatintheDDA+SDSsystem,theaverage1243https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

9Langmuirpubs.acs.org/LangmuirArticleanglebetweentheDDA(SDS)molecularchainandtheZ-axisismutualrepulsionforcebetweenthetwosurfacesofthe45.35°(44.98°).ComparedwiththeDDAorSDSsystem,theliquidfilm.Furthermore,theadditionofSDScausedaaverageanglebetweenthemolecularchainandtheZ-axissparseandlessuprightarrangementofmolecules,whichincreases.Thegreaterthisangle,thesmallerthedistanceenhancedthepermeationofthegasandconsequentlybetweenthemoleculartailchainandthegas−liquidinterfacedecreasedthefoamstability.andthesparserthemoleculararrangement.Furthermore,thepermeationofthegasisenhanced,therebydecreasingthefoamstabilitytoacertainextent.Theresultsareconsistentwiththe■AUTHORINFORMATIONfoamstabilityandTOF-SIMSresults.TheeffectofSDSontheadsorptionconfigurationofDDAinCorrespondingAuthorthegas−liquidinterfaceisdepictedinFigure11.A1,B1,andC1YunfanWang−StateKeyLaboratoryofComplexNonferrousrepresentthegas−liquidinterfacesofDDA(withaceticacid),MetalResourcesCleanUtilizationandFacultyofSDS,andDDA(withaceticacid)+SDSsolution,respectively.MetallurgicalandEnergyEngineering,KunmingUniversityofA2,B2,andC2arethecorrespondingfoammorphologiesattheScienceandTechnology,Kunming650093,China;macrolevel.TheadditionofSDScandecreasetheDDAorcid.org/0000-0003-4393-7015;Email:asc_cloud@adsorptionatthegas−liquidinterfaceandcausesomeDDA163.commoleculestomigratetothesolutionandformmicelles.Thisphenomenonleadstotheincreaseinsurfacetension.Moreover,AuthorsaddingSDScandecreasethegas−liquidinterfaciallayerXimeiLuo−FacultyofLandandResourceEngineeringandthicknessandenhancethemovementabilityofthewaterStateKeyLaboratoryofComplexNonferrousMetalResourcesmoleculesaroundtheheadgroupsofthesurfactants.CleanUtilization,KunmingUniversityofScienceandFurthermore,suchanadditiongreatlydecreasestheinteractionTechnology,Kunming650093,ChinabetweentheheadgroupsofDDAandSDSandtheirQiqiangLin−FacultyofLandandResourceEngineering,correspondingcounterions(CHCOO−andNa+,respectively)KunmingUniversityofScienceandTechnology,Kunming3atthegas−liquidinterface.Asaresult,thecounterionsmigrate650093,Chinafromtheinterfacephasetothesolutionphase,therebyShumingWen−FacultyofLandandResourceEngineeringandweakeningthemutualrepulsionforcebetweenthetwosurfacesStateKeyLaboratoryofComplexNonferrousMetalResourcesoftheliquidfilm.TheadditionofSDSalsocausesasparseandCleanUtilization,KunmingUniversityofScienceandlessuprightarrangementofmolecules,whichenhancestheTechnology,Kunming650093,ChinapermeationofthegasandconsequentlydecreasesthefoamHaoLai−FacultyofLandandResourceEngineering,Kunmingstability.UniversityofScienceandTechnology,Kunming650093,China■LinpingQi−FacultyofLandandResourceEngineering,CONCLUSIONSKunmingUniversityofScienceandTechnology,KunmingTheobjectiveofthisstudyistoinvestigatetheeffectofSDSon650093,ChinathefoamstabilityoftheDDAsolutionandonitsadsorptionXuetongWu−FacultyofLandandResourceEngineering,configurationatthegas−liquidinterface.TheresultsoftheKunmingUniversityofScienceandTechnology,Kunmingsurfacetensiontests,ToF-SIMSmeasurements,andMD650093,ChinasimulationprovidedusefulknowledgeonwhySDSdecreasesYongfengZhou−FacultyofLandandResourceEngineering,thefoamstabilityoftheDDAsolution.KunmingUniversityofScienceandTechnology,Kunming(1)ThefrothstabilityoftheDDAsolutionwasextremely650093,Chinastrong.AddingacertainamountofSDScoulddecreaseZhenguoSong−StateKeyLaboratoryofMineralProcessingthefoamstability.ThefoamstabilityofthemixedScienceandTechnology,BGRIMMTechnologyGroup,Beijingsurfactant(DDA+SDS)waslowerthanthatofthesingle100160,Chinasurfactant(DDAorSDS).Completecontactinformationisavailableat:(2)Theresultsofthesurfacetensiontests,ToF-SIMShttps://pubs.acs.org/10.1021/acs.langmuir.0c03248measurements,andMDsimulationindicatedthattheCSAofSDSinthegas−liquidinterfacewaslargerthanNotesthatofDDA.Therefore,theadditionofSDScouldTheauthorsdeclarenocompetingfinancialinterest.decreasetheDDAadsorptionattheinterfaceandcausesomeDDAmoleculestomigratetothesolutionandform■micelles.ThisphenomenonledtotheincreaseinsurfaceACKNOWLEDGMENTStension.AddingSDScouldreducethegas−liquidTheauthorsgratefullyacknowledgethefinancialsupportfrominterfaciallayerthickness,weakentheinteractiontheNationalNaturalScienceFoundationofChina(grantnos.intensitybetweentheheadgroupsofthesurfactants51964025and51604130),theTenThousandTalentsPlanforandwatermolecules,andenhancethemovementabilityYoungTop-notchTalentsofYunnanProvince(YNWR-QNBJ-ofthewatermoleculesaroundtheheadgroups.2018-167),theOpenFundProjectoftheStateKeyLaboratoryMoreover,suchanadditiongreatlydecreasedtheofMineralProcessingScienceandTechnology(BGRIMM-interactionbetweentheheadgroupsofDDAandSDSKJSKL-2019-05),andtheFundProjectoftheAnalyticalandandtheircorrespondingcounterions(CHCOO−and3TestingResearchCenterofKunmingUniversityofScienceandNa+,respectively)atthegas−liquidinterface,therebyTechnology(2020T20140027).Additionally,theauthorsresultinginthemigrationofthecounterionsfromthewouldliketoexpresstheirgratitudetoeditorsandreviewersinterfacephasetothesolutionphase,whichweakenedthefortheirdiligentwork.1244https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

10Langmuirpubs.acs.org/LangmuirArticle■(24)Holland,P.M.;Rubingh,D.N.NonidealityatInterfacesinREFERENCESMixedSurfactantSystems.ACSSymposiumSeries;AmericanChemical(1)Birdi,K.SurfaceandColloidChemistry:PrinciplesandApplications;Society,1992;pp327−341.CRCPress:NewYork,2010;pp161−170.(25)Kaler,E.W.;Murthy,A.K.;Rodriguez,B.E.;Zasadzinski,J.A.(2)Liu,W.;Liu,W.;Dai,S.;Wang,B.Adsorptionofbis(2-hydroxy-3-SpontaneousVesicleFormationinAqueousMixturesofSingle-Tailedchloropropyl)dodecylamineonquartzsurfaceanditsimplicationonSurfactants.Science1989,245,1371−1374.flotation.ResultsPhys2018,9,1096−1101.(26)Stellner,K.L.;Amante,J.C.;Scamehorn,J.F.;Harwell,J.H.(3)Sun,W.;Liu,W.;Dai,S.;Yang,T.;Duan,H.;Liu,W.EffectofPrecipitationPhenomenainMixturesofAnionicandCationicTween80onFlotationSeparationofMagnesiteandDolomiteUsingSurfactantsinAqueousSolutions.J.ColloidInterfaceence1988,123,NaOLastheCollector.J.Mol.Liq.2020,315,113712.186−200.(4)Yuan,S.;Liu,X.;Gao,P.;Han,Y.ASemi-IndustrialExperimentof(27)Wang,R.;Li,Y.;Li,Y.InteractionBetweenCationicandAnionicSuspensionMagnetizationRoastingTechnologyforSeparationofIronSurfactants:DetergencyandFoamingPropertiesofMixedSystems.J.MineralsfromRedMud.J.Hazard.Mater.2020,394,122579.SurfactantsDeterg.2014,17,881−888.(5)Filippov,L.O.;Severov,V.V.;Filippova,I.V.AnOverviewofthe(28)Zhao,J.;Liu,J.;Jiang,R.InteractionbetweenAnionicandBeneficiationofIronOresviaReverseCationicFlotation.Int.J.Miner.CationicGeminiSurfactantsatAir/WaterInterfaceandinAqueousProcess.2014,127,62−69.BulkSolution.ColloidsSurfacesAPhysicochem.Eng.Asp.2009,350,(6)Monte,M.B.M.;Oliveira,J.F.FlotationofSylvitewith141−146.DodecylamineandtheEffectofAddedLongChainAlcohols.Miner.(29)Mine,V.O.F.;Zihu,L.V.;Dengkui,Z.;Huiyu,S.H.A.;Eng.2004,17,425−430.Changmiao,L.I.U.;Min,W.E.I.;Dongyin,W.U.;Utilization,M.;(7)Wang,H.;Wen,S.;Han,G.;Xu,L.;Feng,Q.ActivationOre,P.ExperimentalStudyonLepidoliteFlotationwithAnion-CationMechanismofLeadIonsintheFlotationofSphaleriteDepressedwithCombinedCollectors.Conserv.Util.Miner.Resour.2017,2,8−11.ZincSulfate.Miner.Eng.2020,146,106132.(30)Cheng-cen,W.EffectofCombinedCollectoronOxidizedZinc(8)Zhang,H.;Liu,W.;Han,C.;Wei,D.IntensifyDodecylamineOreFlotation.J.ShenyangUniv.Chem.Technol.2010,2,135−138.AdsorptiononMagnesiteandDolomiteSurfacesbyMonohydric(31)Vidyadhar,A.;Kumari,N.;Bhagat,R.P.AdsorptionMechanismAlcohols.Appl.Surf.Sci.2018,444,729−738.ofMixedCollectorSystemsonHematiteFlotation.Miner.Eng.2012,(9)Shu,K.;Xu,L.;Wu,H.;Peng,L.;Xu,Y.;Luo,L.;Yang,J.;Tang,Z.26,102−104.InSituAdsorptionofMixedCollectorsBHA/DDAinSpodumene-(32)Zhao,Z.;Feng,Q.;Wang,W.;Xu,L.;Hunag,Y.AdsorptionFeldsparFlotationSystem.Sep.Purif.Technol.2020,251,117325.CharacteristicsofFeldsparandQuartzinAnion-CationCollector.(10)Gao,Z.;Sun,W.;Hu,Y.NewInsightsintotheDodecylamineZhongnanDaxueXuebao(ZiranKexueBan)/J.Cent.SouthUniv.(Sci.AdsorptiononScheeliteandCalcite:AnAdsorptionModel.Miner.Eng.Technol.2013,44,1312−1318.2015,79,54−61.(33)Cheng,H.;Liu,C.;Dong,D.;Fang,L.;Feng,A.;Guo,Z.(11)Deng,J.;Yang,S.;Liu,C.;Li,H.EffectsoftheCalciteonQuartzFlotationBehaviorandMechanismofBiotitewithSodiumOleateandFlotationUsingtheReagentSchemeofStarch/Dodecylamine.ColloidsDodecylamineasCombinedCollector.Met.Mine2017,1,99−103.SurfacesAPhysicochem.Eng.Asp.2019,583,123983.(34)Xu,L.;Hu,Y.;Tian,J.;Wu,H.;Wang,L.;Yang,Y.;Wang,Z.(12)Liu,W.;Liu,W.;Wei,D.;Li,M.;Zhao,Q.;Xu,S.SynthesisofSynergisticEffectofMixedCationic/AnionicCollectorsonFlotationN,N-Bis(2-Hydroxypropyl)LaurylamineandItsFlotationonQuartz.andAdsorptionofMuscovite.ColloidsSurfaces,A.Physicochem.Eng.Chem.Eng.J.2017,309,63−69.Asp.2016,492,181−189.(13)Zhang,G.StudyofQuatemaryAmmoniumSaltand(35)Sun,L.;Lv,X.;Du,F.;Chen,P.StudyonCationicFlotationDodecylamineontheFlotationBehaviorandFrothStabilityofMica;FoamandDefoamingTechnology.Mod.Min.2009,6,36−38.CentralSouthUniversity,2013;pp42−47.(36)Zhang,L.IntroductionofMechanism,Applicationand(14)Bin,J.;Wei,S.;Ruo-lin,W.DefoamingMechanisminReverseEvaluationMethodsofDefoamingAgents.ChinaDeterg.Cosmet.FlotationofCollophaniteUsingDodecylAmine.Min.Metall.Eng.2018,41,40−44.2018,038,47−50.(37)Li,G.RegulationofFlotationFrothStabilityandRemovalof(15)Cao,Y.StudyonFlotationandFrothPerformanceofNewCationicUnburned-CarbonfromCoalFlyAsh;ChinaUniversityofMiningandCollectorsofIronOre;CentralSouthUniversity,2011;pp37−59.Technology,2013;pp133−135.(16)Papini,R.M.;Brandao,P.R.G.;Peres,A.E.C.Cationic̃(38)Liu,T.NumericalSimulationofBubbleandPulpFlowFeaturesinFlotationofIronOres:AmineCharacterizationandPerformance.KYFII-40FlotationMachine;CentralSouthUniversity:China,2014;ppMiner.Metall.Process.2001,18,5−9.53−54.(17)Chen,Y.TheStudyofFlotationofHemimorphiteZincOxideby(39)Wang,J.;Nguyen,A.V.;Farrokhpay,S.ACriticalReviewoftheUsingCationAmineCollectorandIt’sMechanism;GuangxiUniversity,Growth,DrainageandCollapseofFoams.Adv.ColloidInterfaceSci.2006;pp72−73.2016,228,55−70.(18)Jin,J.;Gao,H.;Chen,X.;Peng,Y.;Min,F.TheFlotationof(40)Cantat,I.;Cohen-Addad,S.;Elias,F.;Graner,F.;Saint-Jalmes,A.AluminosilicatePolymorphicMineralswithAnionicandCationicFoams:StructureandDynamics;CPIGroup(UK)Ltd.:Croydon,2013;Collectors.Miner.Eng.2016,99,123−132.pp75−140.(19)Liu,A.;Fan,P.-P.;Qiao,X.-X.;Li,Z.-H.;Wang,H.-F.;Fan,M.-Q.(41)Zhang,H.;Miller,C.A.;Garrett,P.R.;Raney,K.H.MechanismSynergisticEffectofMixedDDA/SurfactantsCollectorsonFlotationofforDefoamingbyOilsandCalciumSoapinAqueousSystems.J.ColloidQuartz.Miner.Eng.2020,159,106605.Interfaceence2003,263,633−644.(20)Xu,L.;Hu,Y.;Tian,J.;Wu,H.;Yang,Y.;Zeng,X.;Wang,Z.;(42)Karakashev,S.I.;Manev,E.D.FrothingBehaviorofNonionicWang,J.SelectiveFlotationSeparationofSpodumenefromFeldsparSurfactantSolutionsinthePresenceofOrganicandInorganicUsingNewMixedAnionic/CationicCollectors.Miner.Eng.2016,89,Electrolytes.J.ColloidInterfaceence2001,235,194−196.84−92.(43)Yekeen,N.;Manan,M.A.;Idris,A.K.;Samin,A.M.Influenceof(21)Tian,J.;Xu,L.;Yang,Y.;Liu,J.;Zeng,X.;Deng,W.SelectiveSurfactantandElectrolyteConcentrationsonSurfactantAdsorptionFlotationSeparationofIlmenitefromTitanaugiteUsingMixedandFoamingCharacteristics.J.Pet.Sci.Eng.2017,149,612−622.Anionic/CationicCollectors.Int.J.Miner.Process.2017,166,102−107.(44)Kostakis,T.;Ettelaie,R.;Murray,B.S.EffectofHighSalt(22)Xu,L.;Wu,H.;Dong,F.;Wang,L.;Wang,Z.;Xiao,J.FlotationConcentrationsontheStabilizationofBubblesbySilicaParticles.andAdsorptionofMixedCationic/AnionicCollectorsonMuscoviteLangmuir2006,22,1273−1280.Mica.Miner.Eng.2013,41,41−45.(45)Zhao,J.-B.;Wang,S.-B.;Wang,M.-M.StudyonSaltResistance(23)Kume,G.;Gallotti,M.;Nunes,G.ReviewonAnionic/CationicandFoamStabilityofFoamingAgent.FineSpec.Chem.2015,23,26−SurfactantMixtures.J.SurfactantsDeterg.2008,11,1−11.29.1245https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

11Langmuirpubs.acs.org/LangmuirArticle(46)Cao,X.-L.;He,X.J.;Zhao,G.Q.;Song,X.W.;Li,Y.Effectof(66)Jang,S.S.;Goddard,W.A.StructuresandPropertiesofNewtonHydrophobicChainLengthofSurfactantsonFoamStabilityatHighBlackFilmsCharacterizedUsingMolecularDynamicsSimulations.J.Temperature.Chem.J.ChineseUniv.2007,28,2106−2111.Phys.Chem.B2006,110,7992−8001.(47)Han,L.-b.;Fu,X.;Zhao,H.;Li,M.;Zhao,J.;Wang,H.;Feng,Z.(67)Li,C.;Li,Y.;Yuan,R.;Lv,W.StudyoftheMicrocharacterofEffectofCollectingAgentandFrothingAgentonStabilityofThree-UltrastableAqueousFoamStabilizedbyaKindofFlexibleConnectingPhaseCleanCoalFrothinFlotation.CoalPrep.Technol.2015,02,3.Bipolar-HeadedSurfactantwithExistenceofMagnesiumIon.Langmuir(48)Osei-Bonsu,K.;Shokri,N.;Grassia,P.FoamStabilityinthe2013,29,5418−5427.PresenceandAbsenceofHydrocarbons:FromBubble-toBulk-Scale.(68)Yan,H.;Guo,X.-L.;Yuan,S.-L.;Liu,C.-B.MolecularDynamicsColloidsSurfacesAPhysicochem.Eng.Asp.2015,481,514−526.StudyoftheEffectofCalciumIonsontheMonolayerofSDCand(49)Simjoo,M.;Rezaei,T.;Andrianov,A.;Zitha,P.L.J.FoamSDSnSurfactantsattheVapor/LiquidInterface.LangmuirAcsJ.StabilityinthePresenceofOil:EffectofSurfactantConcentrationandSurfacesColloids2011,27,5762−5771.OilType.ColloidsSurfacesAPhysicochem.Eng.Asp.2013,438,148−(69)ChehrehChelgani,S.;Hart,B.TOF-SIMSstudiesofsurface158.chemistryofmineralssubjectedtoflotationseparation-Areview.(50)Liu,D.;Chen,X.TheInfluenceoftheTemperatureupontheMiner.Eng.2014,57,1−11.(70)Barnes,T.J.;Kempson,I.M.;Prestidge,C.A.SurfaceAnalysisFoamStability.ChinaOffshorePlatf2006,04,19−22.forCompositional,ChemicalandStructuralImaginginPharmaceutics(51)Yoon,I.-H.;Jung,C.-H.;Yoon,S.B.;Kim,C.;Kim,S.;Yang,H.withMassSpectrometry:AToF-SIMSPerspective.Int.J.Pharm.2011,B.;Moon,J.-K.;Choi,W.-K.StructureandStabilityofDecontamina-417,61−69.tionFoaminConcentratedNitricAcidandSilicaNanoparticlesby(71)Cushman,C.V.;Brüner,P.;Zakel,J.;Major,G.H.;Lunt,B.M.;ImageAnalysis.Ann.Nucl.Energy2016,95,102−108.Smith,N.J.;Grehl,T.;Linford,M.R.LowEnergyIonScattering(52)Xiao,M.U.StudyonStabilityofThree-PhaseFoamin(LEIS).APracticalIntroductiontoItsTheory,Instrumentation,andCollophaniteFlotation.Conserv.Util.Miner.Resour.2012,4,26−28.Applications.Anal.Methods2016,8,3419−3439.(53)Stubenrauch,C.;Hamann,M.;Preisig,N.;Chauhan,V.;Bordes,(72)Hu,S.-Q.;Ji,X.;Fan,Z.;Zhang,T.;Sun,S.CounterionEffectsonR.OnHowHydrogenBondsAffectFoamStability.Adv.ColloidthePropertiesofSulfateSurfactantsattheAir/LiquidInterfacebyInterfaceence2017,247,435−443.MolecularDynamicsSimulation.ActaPhysico-ChimicaSin.2015,31,(54)Li,X.;Shaw,R.;Stevenson,P.EffectofHumidityonDynamic83−89.FoamStability.Int.J.Miner.Process.2010,94,14−19.(73)Zhao,T.;Xu,G.;Yuan,S.;Chen,Y.;Yan,H.Molecular(55)Fainerman,V.B.;Aksenenko,E.V.;Petkov,J.T.;Miller,R.DynamicsStudyofAlkylBenzeneSulfonateatAir/WaterInterface:AdsorptionLayerCharacteristicsofMixedOxyethylatedSurfactantEffectofInorganicSalts.J.Phys.Chem.B2010,114,5025−5033.Solutions.J.Phys.Chem.B2010,114,4503.(74)Sun,H.;Ren,P.;Fried,J.R.TheCOMPASSForceField:(56)Larson,K.;Vaknin,D.;Villavicencio,O.;Mcgrath,D.;Tsukruk,ParameterizationandValidationforPhosphazenes.Comput.Theor.V.V.MolecularPackingofAmphiphileswithCrownPolarHeadsatthePolym.ence1998,8,229−246.Air−WaterInterface.J.Phys.Chem.B2002,106,7246−7251.(75)Majeed,T.;Sølling,T.I.;Kamal,M.S.Foamstability:The(57)Reynolds,P.A.;Mcgillivray,D.J.;Gilbert,E.P.;Holt,S.A.;InterplaybetweenSalt-,Surfactant-andCriticalMicelleConcentration.Henderson,M.J.;White,J.W.NeutronandX-rayReflectivityfromJ.Pet.Sci.Eng.2020,187,106871.Polyisobutylene-BasedAmphiphilesattheAir−WaterInterface.(76)Yekeen,N.;Manan,M.A.;Idris,A.K.;Samin,A.M.InfluenceofLangmuir2003,19,752−761.SurfactantandElectrolyteConcentrationsonSurfactantAdsorption(58)Curschellas,C.;Kohlbrecher,J.;Geue,T.;Fischer,P.;Schmitt,andFoamingCharacteristics.J.Pet.Sci.Eng.2017,149,612−622.B.;Rouvet,M.;Windhab,E.J.;Limbach,H.J.FoamsStabilizedby(77)Wang,S.;Mulligan,C.N.AnEvaluationofSurfactantFoamMultilamellarPolyglycerolEsterSelf-Assemblies.LangmuirAcsJ.TechnologyinRemediationofContaminatedSoil.Chemosphere2004,SurfacesColloids2013,29,38−49.57,1079−1089.(59)Li,P.X.;Dong,C.C.;Thomas,R.K.;Wang,Y.L.Adsorptionof(78)Wang,H.;Chen,J.AStudyonthePermeabilityandFlowGeminiSurfactantswithPartiallyFluorinatedChainsatThreeBehaviorofSurfactantFoaminUnconsolidatedMedia.Environ.EarthDifferentSurfaces:NeutronReflectometryResults.LangmuirAcsJ.Sci.2013,68,567−576.SurfacesColloids2011,27,656−664.(79)Firouzi,M.;Nguyen,A.V.EffectsofMonovalentAnionsand(60)Chen,M.;Dong,C.;Penfold,J.;Thomas,R.K.;Smyth,T.J.P.;CationsonDrainageandLifetimeofFoamFilmsatDifferentInterfacePerfumo,A.;Marchant,R.;Banat,I.M.;Stevenson,P.;Parry,A.;ApproachSpeeds.Adv.PowderTechnol.2014,25,1212−1219.Tucker,I.;Campbell,R.A.AdsorptionofSophorolipidBiosurfactants(80)Baz-Rodríguez,S.A.;Botello-Alvarez,J.E.;Estrada-Baltazar,A.;onTheirOwnandMixedwithSodiumDodecylBenzeneSulfonate,atVilchiz-Bravo,L.E.;Padilla-Medina,J.A.;Miranda-Lopez,R.Effectof́theAir/WaterInterface.LangmuirAcsJ.SurfacesColloids2011,27,ElectrolytesinAqueousSolutionsonOxygenTransferinGas-Liquid8854−8866.BubbleColumns.Chem.Eng.Res.Des.2014,92,2352−2360.(61)Rao,Y.;Li,X.;Lei,X.;Jockusch,S.;George,M.W.;Turro,N.J.;(81)Behera,M.R.;Varade,S.R.;Ghosh,P.;Paul,P.;Negi,A.S.Eisenthal,K.B.ObservationsofInterfacialPopulationandOrgan-FoaminginMicellarSolutions:EffectsofSurfactant,Salt,andOilizationofSurfactantswithSumFrequencyGenerationandSurfaceConcentrations.Ind.Eng.Chem.Res.2014,53,18497−18507.Tension.J.Phys.Chem.C2011,115,12064−12067.(82)Liu,Z.;Liu,G.S.;Yu,J.G.EffectofPrimaryAlkylamine(62)Tang,C.Y.;Huang,Z.;Allen,H.C.InterfacialWaterStructureAdsorptiononMuscoviteHydrophobicity.ActaPhysico-ChimicaSin.andEffectsofMg2+andCa2+BindingtotheCOOHHeadgroupofa2012,28,201−207.PalmiticAcidMonolayerStudiedbySumFrequencySpectroscopy.J.(83)Saito,T.;Sakakibara,K.;Miyamoto,Y.;Yamada,M.AStudyofSurfactantEffectsontheLiquid-PhaseMotionaroundaZigzagging-Phys.Chem.B2011,115,34−40.AscentBubbleUsingaRecursiveCross-CorrelationPIV.Chem.Eng.J.(63)Wick,C.D.;Chen,B.;Valsaraj,K.T.Computational2010,158,39−50.InvestigationoftheInfluenceofSurfactantsontheAir−Water(84)Kovats,P.;Thévenin,D.;Záhringer,K.InfluenceofViscosityand̈InterfacialBehaviorofPolycylicAromaticHydrocarbons.J.phys.chem.cSurfaceTensiononBubbleDynamicsandMassTransferinaModel2010,114,14520−14527.BubbleColumn.Int.J.Multiph.Flow2020,123,103174.(64)Zhang,Y.-b.;Chen,J.-h.;Li,Y.-q.;Zhang,P.-x.Adsorption(85)Sardeing,R.;Painmanakul,P.;Hebrard,G.EffectofSurfactantśStructuresofFrothersatGas-LiquidInterfaceUsingDFTMethod.J.onLiquid-SideMassTransferCoefficientsinGas-LiquidSystems:ACent.SouthUniv.2019,026,536−549.FirstSteptoModeling.Chem.Eng.Sci.2006,61,6249−6260.(65)Ji,X.EffectofMolecularStructureonFoamStabilityofGeminiSurfactantsbyMolecularDynamicsSimulation;ChinaUniversityofPetroleum:China,2016;pp15−16.1246https://dx.doi.org/10.1021/acs.langmuir.0c03248Langmuir2021,37,1235−1246

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭