《E ff ect of Loading on the Adhesion and Frictional Characteristics of Top Layer Articular Cartilage Nanoscale Contact A Molecular Dynami》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/LangmuirArticleEffectofLoadingontheAdhesionandFrictionalCharacteristicsofTopLayerArticularCartilageNanoscaleContact:AMolecularDynamicsStudyAbhinavaChatterjee,DevendraK.Dubey,*andSujeetK.SinhaCiteThis:Langmuir2021,37,46−62ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Articularcartilageisawater-lubricatednaturallyoccurringbiologicalinterfaceimpartinguniquemechanicalandultralowfrictionalpropertiesinbonejoints.Althoughthematerialofcartilage,synovialfluidcomposition,andtheirlubricatingmodesandpropertieshavebeenextensivelyinvestigatedatvariousscalesexperimentally,thereisstillalackofunderstandingofloadbearing,adhesion,andfrictionmechanismsofthecartilage−cartilageinterfacefromanatomisticperspectiveunderheavyloads.Inthisstudy,theeffectofloadingonadhesionandfrictionalbehaviorinarticularcartilageisinvestigatedwithaproposedatomisticmodelfortoplayercartilage−cartilagecontactinunhydratedconditionsusingmoleculardynamics(MD)simulations.Pull-offtestsrevealthatcohesiveinteractionsoccurattheinterfaceduetoformationofheavilyinterpenetratedatomisticsitesleadingtostretchingandlocalizedpullingoffragmentsduringsliding.Slidingtestsshowthatfrictionisload-anddirection-dependentwiththecoefficientoffriction(COF)obtainedintherangeof0.20−0.75attheinterfaceforslidinginparallelandperpendiculardirectionstothecollagenaxis.Thesevaluesareingoodagreementwithearliernanoscaleexperimentalresultsreportedforthetoplayercartilage−cartilageinterface.TheCOFreduceswithanincreaseinloadandtendstobehigherfortheparallelslidingcasethanfortheperpendicularcaseowingtothepresenceoftheconstantnumberofH-bonds.Overall,thisworkcontributestowardunderstandingslidinginunhydratedbiointerfaces,whichistheprecursorofwear,andprovidesinsightsintoimplantresearch.13■INTRODUCTIONpresenceofwater.ThismechanismofboundarylubricationleadstoswellingupandpressurizationresultinginaverylowArticularcartilage(AC)isanaturallyoccurringhierarchicalfrictionalforceandwearlessconditionatthecartilagebiologicalmaterial,whichiswater-filledporousconnective14interface.Incontrasttothis,cartilagesdofail,i.e.,deformtissue,separatedfromopposingcartilagebysynovialfluid,andDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at12:23:15(UTC).orwearout,duetocontinuousslidingledbyasetofcascadingofferssuperiorbiomechanicalandlubricatingpropertiesoveraSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.mechanisms,i.e.,removalofthefilmandruptureofcollagenlifetimeatthecartilagesynovialinterfaceforthehealthyfibersoccurringatthecartilage−cartilageinterfacialcontactoperationofjoints.ACpossessesvariousmodesoflubricationduetolubricantscarcity.Therefore,theinitiationofwearisunderseveralbiomechanicalconditionslikehigherload,lowmajorlyamechanicalprocessbasedonthenanostructureofvelocitytoimpartsuperiorload-bearingcharacteristics,lowertheporoustissue.adhesion,andcoefficientoffriction(COF=0.0005−0.04)at1−3Thearrangementandtangentialorientationofcollagentypethesynovialjointinterfaces.AmongtheseverallubricationIIfibersatthetopmostsuperficialamorphouslayer(SAL)ofmechanismsproposedtilldate,themixedandtheboundarycartilageareassumedtoprovideresistanceagainstshearwhenlubricationsaredominantwhenjointsareheavilyloaded,and15cartilagesslideagainsteachother.Thefibrillarynetworkofthecartilagesarenotcapableofsupportingafluidfilmin4−8collagenbindsmacromoleculestoprovidenecessaryload-betweenthesolidsurfaces.Athigherloads,theboundarylubricantslikealbumins,phospholipidswithcollagen,andwateratthemolecularasperitylevelcontactsreduceadhesionReceived:August3,2020andprovidelowstaticandkineticfrictionathighlyconfinedRevised:December10,2020geometriesbearinghighcontactstress(1.9−6MPa).9−12Published:December31,2020Aqueouslubricationoccurringatthecartilageinterfaceisassumedtobeduetotherepulsiveinteractioninbetweennegativelychargedpolymerbrushlikeproteoglycansinthe©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c0228346Langmuir2021,37,46−62
1Langmuirpubs.acs.org/LangmuirArticleFigure1.Hierarchicalstructureoftoplayercartilage−cartilagecontactwiththeproposedthree-dimensionalatomisticmodelforMDsimulations.(a)Schematicoftoplayercartilage−cartilagecontactatthekneejoint.(b)TopmostlayeroftheSALintheextracellularmatrix(ECM)madeupofcollagenfibersarrangedtangentiallytotheslidingdirection.(c)SEMimageofcollagenfiberattheknee.Imageobtainedunderthetermsofthe2626CreativeCommonsAttributionLicense.(d)Schematicofprototypicfiber,whichmakesupthecollagenfiber.(e)Representationofcollagen26heterofibril.(f)Atomisticmodelofcartilageintheformofasliderusingarepresentativefragment.(g)CollagentypeIIfragmentchosenforthestudy.(h)Theatomisticrepresentationoftheportionhighlightedwhereoxygen,nitrogen,sulfur,carbon,andhydrogenarerepresentedinred,blue,yellow,gray,andwhitespheres.9,16,17bearingduringcompressionandshearing.Thehydrationaddressthisfundamentalissue,effortshavebeenmadetostateofthecollagenfibersisassociatedwiththemechanicalbridgethegapbetweenthecontinuum-scaleunderstandingpropertiesofthefibers.Atthenanoscale,thesecollagenfibersandtheatomicscaleusingexperimentaltechniqueslikeatomicandhydratedproteoglycansduringheavyloadingareassumedforcemicroscopy(AFM)andsurfaceforceapparatusmicros-18,19tooffermolecular-levelefficientlubricatingproperties.Thecopy(SFA).Despitethesenanotribologicalinvestigations,thetensilebehaviorofcartilageisimpartedbythenetworkofgenesisoflowadhesionandultralowCOFisstillnot20collagenattheinterface.completelyunderstoodfromstructuralandatomicperspec-9Lubricationatthecartilageinterfaceisascale-andtime-tives.Therefore,amoleculardynamics(MD)studyofthetopdependentprocess,andthemechanicalpropertiesarealsointerlayercartilageunhydratedinterfaceissuitableandinfluencedbythetissue-levelpropertieslikemorphologyandrequiredtounderstandhowthemolecular-levelstructural20thestructuralorientationofthecartilage.Tounderstandandpropertiesofthecartilageinterfacecontributetotheload-47https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
2Langmuirpubs.acs.org/LangmuirArticle9bearing,antiadhesive,andlow-frictionalcapabilitiesoftheinfluencestheasperity-leveltribologicalproperties.Thecartilageusinganatomistic-levelanalysis.However,thedepletionofproteoglycansandbreakdownofthecollagenknowledgeofthecompositionofthetoplayercartilagefibrillarnetworkleadtoanincreaseinadhesion,changeintheextracellularmatrix(ECM),surfacemorphology,anditsroleatroughness,degradationofcartilage,andthusleadtoosteo-28theinterfacialcontactisimportant.arthritissequentially.Itisfoundthatthecontentof29Tounderstandthestructure−functionrelationofload-proteoglycanattheSALisveryscarce.Torelatethistobearingcartilageatthenanoscale,thehierarchyofthecartilagetheinitiationofwear,thereisaneedtounderstandthetoplayerandtheinterfacialcontactzoneformedbetweencollagenmolecular-levelactivitieswiththephysiologicalopposingcartilageisillustratedinFigure1.Followingatop-to-loadingofthecartilageinterface.Thiswillalsoprovideinsightsdownapproachofatoplayercartilage−cartilagecontact,theintoin-depthinformationontheloweringoffrictionandload-toplayeroftheextracellularmatrix(ECM)comprisesthreebearingandrevealfailuremechanismsthatwillprovideuniquezones,top,middle,anddeep,whereonlythetopsuperficialsolutionsforimplantresearchusingMDsimulations.amorphouslayer(SAL)isshowninFigure1b.ThetoplayerofThemeasurementofforceanditscorrelationwiththetheSALoftheECMconsistsoftangentiallyarrangedcollagenpolymerstructurestillremainachallengeattheslidingfibers,whichcontributemajorlytothesurfacemechanicalandinterfacesinnanotribologicalexperiments.MoleculardynamicstribologicalpropertiesandareshowninFigure1c.Collagen(MD)studieshavebecomeapotentialtoolforstudyingfibershaveadiameterof200nmandplacedalmost10nmatomic-scalefrictionandconductingslidinganalysisforapart.Basedontheirlocation,thecollagenfibersarestraightpolymers.PreviousMDstudiesreportthefactorsaffectingandhelical-shapedtwinnedproteotypicfibersforhipandkneefriction,i.e.,load,slidingvelocity,slidingdirection,and30joints,respectively,asshowninFigure1d,andaremadeupoftemperatureofmaterials.Thesestudiesalsocomplimentmanycollagenheterofibrils.HeterofibrilsasshowninFigure1emissingunderstandingofthephenomenonsuchasstick−slip,arecircularinthecrosssection,comprisingcollagentypeXIwhichisnotprovidedthroughsmall-scaleexperiments.andcollagentypeIImoleculeswiththelatterinabundance.FrictionstudiesofpolymersrevealinformationonmechanismsThemostabundantproteininthedrystateofcartilageislikeinterfacialbrushing,combing,andchainscissionfor2131collagentypeIIfibrils(20−30%).ThecollagentypeIIpolymer-on-polymersliding.FewMDstudieshavealsomonomeris300nmlongandhasadiameterof1.6nm,whichobservedthedependenceofatomic-scalefrictionofpolymerscomprisesatriplehelixpolypeptidechain,eachchainofwhichonthesurfacechemistrylikethenumberofatomsinteracting32,33isasequenceofthousandaminoacidsmostlyGly-X-Y.Glyacrossthesurfaceandthestructureofthepolymers.representsglycine,andX-Ycanbeanyaminoacid.TheHowever,similarstudiesarepresent,whichhighlighttheatomisticmodeloftoplayercartilageusingarepresentativefactorsaffectingfriction,butamechanicalandfrictionalfragmentofthecollagentypeIImoleculeanalysisonjointproteinsattheatomisticscalerelatingtothe(GPMGPMGPRGPP)ischosenforconstructingthesliderinitiationoffailureinunhydratedcartilagesisrare.Fewstudies22modelinFigure1f.Thecompleteproposedatomisticmodelarepresent,whichproposedasynovialfluidinterlayercartilage34oftoplayercartilage−cartilageunhydratedcontactcomprisesamodelconsideringthemesoscalenatureoftheproblem.sliderandsubstratewithaninterfacialgapinbetweenforAnotherMDstudyonthefrictionalbehaviorinbetweentribologicalstudies.Itisknownthatunderhigh-loadhyaluronicacidandphospholipidsatthecartilageinterfaceis35conditions,somenanoscopiclocalizedcontactzonesinperformed.TheeffectofbreakageofH-bondsandtheroleofsynovialjointscanbecomeunhydratedduetofluidsqueezingdifferentlipidsarealsoinvestigatedtogainmoreinsightinto2336,37outcompletely.Suchzonescanbecomefriction/wearthecartilagetribologyusingmoleculardynamics.Althoughhotspotsandmaystartinfluencingoveralltribologicalbehaviorseveralmechanismsincludingthepolymericbrushtypeofandthereforeareofinterestforfurtherinvestigations.Thisboundarylubricationatthecartilageinterfacearepredicted,simplifiedunhydratedcontactmodelishelpfulinthetheroleofsuperficialtoplayercollagensintheadhesionandincrementalstudyoftheunderlyingloading,adhesion,andload-bearingattheinterfaceintheabsenceofsynovialfluid,shearmechanismsonatoplayercartilage−cartilagecontactwhichcouldleadtowearatveryhighcontactstresses(orderofinterfaceintheabsenceofmolecularconstituentspresentinMPa),requiresin-depthinvestigation.Also,theload-bearingaqueousconditions.Thethreeα1-polypeptidechainsofthezoneisfoundtocontinuouslymigrateattheslidinginterfacescollagentypeIIfragmentchosenasshowninFigure1gareforcartilages.Thus,astudyofthetopcartilagelayermodelidenticalandformedofthesameaminoacidsequenceintheinsteadofpolymer-graftedbrushlubricationissuitableforearliermentionedaminoacidsequence,whereastherearetwounderstandingtheinitializationoffailureinunhydratedα1(I)chainsandoneα2(I)chainforthecollagentypeIconditions.Therefore,ananoscaleMDanalysisofadhesion24molecule.TheatomisticrepresentationofaportionoftheandfrictionisrequiredtostudyfrictionalbehaviorpredictionfragmentanditselementalconstituentsareshowninFigureundertheinfluenceofexternalloadinunhydratedconditions.1h.Accordingtoapreviouscomputationalstudy,aInthisstudy,atopsuperficiallayercartilage−cartilagerepresentativefragmentcanbeanindicatorofitschemicalunhydratedcontactsimplifiedatomisticmodelisdevelopedin25andmechanicalproperties.Thus,theproposedatomistictheformofasliderandsubstratetounderstandtheatomistic-modelisthentestedforitsadhesiveandfrictionalbehavior.levelbehaviorofthemechanismofadherenceattheinter-andTheloadingandslidingbehavioratthecartilagehavebeenintracartilageinterfaceintheunhydratedstateandpredictreportedtomodulatethestiffnessofthestructureoftheECMfrictionalbehaviorduringslidingofthoseinterfaces.Forthethatleadstotailoredbiomechanicalandlubricatingproperties.above,three-dimensionalmoleculardynamicssimulationsonThechangeinthestructure,size,shape,andorientationoftheatomisticcontactmodelareconductedtounderstandthemacromolecules,therefore,affectsthenanoscalemechanicaleffectofexternalloadontheload-bearing,adhesive,and27andshearingpropertiesofthecartilage.Theadhesionfrictionmechanismattheinterfacesusinglarge-scaleatomic/betweenthesemacromoleculesatthetoplayerhighlymolecularmassivelyparallelsimulator(LAMMPS)atthe48https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
3Langmuirpubs.acs.org/LangmuirArticleFigure2.Three-dimensionalproposedatomisticmodelofatoplayercartilage−cartilageunhydratedcontact.(a)Asinglerepresentativefragmentischosenforthedevelopmentofamodelconsistingofthreeidenticalhelicalchainsoftheaminoacidsequence(GPMGPMGPRGPP).Asinglegreenchainhasbeendemarkedwithitsaminoacidconstituents(glycine,proline,andmethionine)ofwhichtheatomicstructureofglycineisexplicitlyshown.(b)Isometricviewoftheproposedatomisticmodelintheformofthesliderandsubstratedepictingonlytwofragmentsbothinitsatomisticandhelicalrepresentations.Eachcylinderrepresentsasinglecollagenfragment.(c)Frontviewoftheproposedatomisticmodeloftoplayercartilage−cartilageunhydratedcontactwiththecollagenfragmentarrangedintotheplanealongitsaxis.(d)Right-handsideviewofthe44proposedatomisticmodel.RenderedusingVMD.atomicscale,whichisnotcompletelyaddressedthroughparameterslikeload,velocity,anddirectionforanunhydrated38experiments.orsparselylubricatedcontact(boundarylubrication).OneofDuetohighcomputationaltimeandcost,fullcollagenthestudiespredictsthatfrictionforcenotonlydependsonthe41microfibrilcontactisnotconsidered.Thisstudyalsoprovidesnormalforcebutalsoontheadhesionofthepolymers.ToinsightintothecontributionofexternalloadingontheCOFobtainnanoscalefrictionbetweensurfaces,theinterfacemustandtheslidingdirectionoftheinterfaces.Furthermore,thisbeclean,atomicallysmooth,andfreeofdefects.Inthestudyisabletopredicttheoverallfrictionalbehaviorofthepresenceofinhomogeneities,theunderstandingoftheunhydratedcartilagecontact.Moreover,onlyafewstudiesfrictionalcontributionscannotbeunderstoodduetostronghavetriedtounderstandthebehavioroftheunhydrateddeviationsowingtothesefactors.cartilage,whichcanbeaprecursorofhighercohesionandmayToconductNEMDsimulationsforcapturingtheadhesiveleadtowearandfailureofthecartilageandadversejointandfrictionalbehaviorofthetoplayercartilage−cartilageconditions.Thepresentstudyalsopredictstheevolutionoftheunhydratedinterface,threestepshavebeenfollowed:first,frictionmechanismfromthenanoscaleduetothearrangementdevelopingtheatomisticmodelofthetoplayercartilage−ofmoleculesandintheabsenceofthelubricantinbetweencartilagecontactinunhydratedconditions,thereafterimposingfibrils.thecomputationalmethodology,andfinallyconductingtheclassicalmoleculardynamicstestforbothadhesiveand■METHODOLOGYANDFRAMEWORKfrictionalpropertiesseparately.ApreviousMDstudyoncollagenadhesionpredictsthatAtomisticModelforTopLayerIntercartilageNano-adhesionforceanddeformationbehaviorofcollagenincreasescaleContact.Toconstructtheatomisticmodelofthetop39layercartilage−cartilageunhydratednanoscalecontact,thewiththedegreeofroughnessofthecollagensurface.Thereisalackofstudytounderstandthecartilage−cartilage(inter)orabovementionedrepresentativecollagentypeIIfragment24intralayercartilageadhesioninbetweenmolecularsurfacesat(GPMGPMGPRGPP)ischosenfromthePDBDatabank.cartilageinterfacesinbiotribology.NonequilibriummolecularThewholecollagentypeIImoleculecontainsthreeidenticaldynamics(NEMD)haslongbeenusedasapotentialα1-polypeptidechainsof1060aminoacidresidues.Thistechniqueforsimulatingnanoscalecontactsandtoobtainfragmentisrepetitiveinnature,inthefibrillarportionofthe40insightsattheatomisticbehaviorofshearing.Mostofthecollagenmolecule,andthuscanbesuitableforamolecularMDstudiesonfrictionaimtofindtheeffectoffundamentaldynamicsstudy.Thischosenfragmentsequenceisusedto49https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
4Langmuirpubs.acs.org/LangmuirArticle46−48generatetheatomisticmodelofacollagenfragmentusingthebehaviorattheinterfaceofmaterialsandisapreferred42gencollagenpackageasshowninFigure2a.Thefragmentchoiceforlarge-scaleMDsimulationswithaccuracyin31,49hasthreehelicalchainsrepresentedinred,blue,andgreen.measurementofforces.All-atomsimulationsarecon-Eachofthesechainsconsistsofaminoacidslikeglycine,ductedusingtheCHARMM27potentialfunctionconsideringproline,andmethionineasdepictedinFigure2a.Theatomicanonbondedforcecutoffof13ÅforvanderWaalsandstructuresofafewofthoseaminoacidsarealsoshowninCoulombicinteractionstomodeltheforceinteractionbetween50Figure2a.Eachofthosehelical-shapedchainsisaddedwithHtheatoms.TheCHARMM27potentialfunctionusedtoatomsusingthepsfgenmoduleoftheNAMDpackagetosimulatetheintraandinteratomicforcescomprisestwo43generatetheatomisticfragment.Therepresentativeatomisticcomponents:UINTERfornonbondedinteractionsandcollagenfragmentisplacedsidebysideatadistanceof15ÅtoUINTRAforsimulatingthebondedinteractions.The44expressionforthepotentialenergyfunctionisshownineq1formalayerinVisualMolecularDynamics(VMD).Threelayersofthechosenfragmentplacedatadistanceof15ÅU=+UUINTERINTRA(1a)(centertocenter)generatedthesliderasshowninFigure1fandsimilarlythesubstrateasshowninFigure2b.EachÄÅÅ126ÉÑÑcylinderrepresentsthecollagentypeIIfragmentsandarrangedÅÅÅÅijjRminijyzzijjRminijyzzÑÑÑÑ1qqijkeepinginviewthetangentialorientationofthecollagenfibrilsUINTER=−∑∑εijÅÅÅÅjjjjzzzzjjjjzzzzÑÑÑÑ+LJÅÅkrij{krij{ÑÑCoul4πεorijatthetopsurfaceofthecartilageineachoftheslidersandtheÅÇÑÖsubstrates.Theatomisticmodelofthesliderandthesubstrate(1b)isplacedataninterfacialgapof15ÅalongtheY-axistoobtain∑∑22aflat-on-flatconfigurationatomisticmodelofthetopUKINTRA=−b()bbK0+−θ()θθ0intercartilageinterfaceforinvestigatingnanoscaleadhesionbaandfrictionasshowninFigure2c.Thisisasimplified+[∑Knφ1c+−os(φδ)]nanoscalemodelandrepresentslocalizednanoscopiccontactdzonesofinterestattheintercartilageinterface.Theatomistic∑∑22modelalsorepresentstwocollagenfragmentsbothinthe+−KKω()ωω0+−UB()uiku0iUBatomisticandribbonrepresentationsofVMD.Thesideviewof(1c)thesameatomisticmodelispresentedinFigure2d.MolecularSimulationSetup.Theconstructedthree-whereKb,Kθ,Kφ,KωandKUB,arethebond,angle,dihedraldimensionalatomisticmodel(86Å×98Å×42Å)oftheangle,improperdihedralangle,andUrey−Bradley(UB)forceunhydratedtopintercartilagecontactmodelconsistsof36constants,respectively.b,θ,ω,φ,anduikarethebondlength,collagenfragments,eachcontaining477atoms,thusresultingbondangle,dihedralangle,impropertorsionangle,andin17,172atoms.Tostudytheeffectofloading,thetopmostdistancebetweeniandkatoms,respectively,withthesubscriptlayeroftheatomisticmodelissubjectedtovariousloads.zerofortheequilibriumvalues.ThesearethecomponentsofBasedonthepreviousexperimentalstudies,thecontactbondedinteractions.Meanwhile,thenonbondedinteractionspressurerangechosenforAFMexperimentsis1.9−6MPa.9compriseLennardJonesandCoulombicinteractions.FortheMoreover,incomparisontoAFMexperiments,MDoffrictionLennardJones(LJ)potential,εijisthepotentialwelldepthforstudiescansimulatethefrictionalprocessbetteraccountingatomsiandj,andRministhedistanceatwhichthepotentialijeachparametersystematicallyintheformofanincrementalreachesitsminimumvalue,andrijisthedistancebetweenthestudytorevealatomic-levelinformationofthephenomenonatatomsiandj.FortheelectrostaticCoulombicinteractions,qi,thehiddeninterface.Highercontactstresscanaccuratelyqjarethechargesoftheatomsiandjwithεobeingthe45predictthefrictionbehaviorofanatomicsystem.Therefore,dielectricconstantofvacuum.tosimulateaclosenanoscaleinterfacialcontact,arangeofPeriodicboundaryconditionsareimposedinthex-andz-highercontactstressesinincreasingorderhasbeensimulatedaxes,i.e.,perpendicularandparalleltothecollagenaxes,(96.25,192.5,385,770MPa)byapplyingdifferentloads(3.5,whereasshrink-wrappedconditionsinthey-directionnormal7,14,28nN)ontheatomisticmodel.Toascertaintheeffectoftothecollagenbedformedareimposedtosimulateaninfiniteloadonadhesionandfriction,differentloadsareappliedonflat-on-flatinterfacialcontact.Thetimestepischosentobe1thetopmostlayerconsistingof2850atomsafterpre-fsforallequilibrationsimulations.Theatomisticmodelequilibration.Afterloading,foreachcase,post-equilibrationconsistsofsixlayersintheformofthesliderandsubstrate.isperformedfor0.1ns.Thereafter,foreachcaseusingtheTherefore,theload-bearing,adhesion,andfrictionalbehaviorpotentialfunctions,thedynamicpropertiesareobtainedforwhileslidingareobtainedandanalyzedlayerbylayer.ThetheiradhesiveandfrictionalbehaviorusingLAMMPS.Forthestepsfollowedforallthesimulationsareminimizationandpre-adhesivetest,thesecaseswillbereferredtoasL3.5,L7,L14,equilibrationfollowedbyloadingandpost-equilibration.andL28,whereasforthefrictiontestalongtheperpendicularFinally,thepost-equilibratedloadcasesaretestedfordynamicdirection(X-axis),thesecaseswillbereferredtoasL3.5X,propertiesowingtoadhesionandfriction.L7X,L14X,andL28X.ForthefrictiontestalongtheparallelTheatomisticmodelforeachcaseisminimizedusingthedirection(Z-axis),thecasesarenomenclatureasL3.5Z,L7Z,ConjugateGradientalgorithmfor10ps.TheinitialatomicL14Z,andL28Z,respectively.velocitiesareassignedusingGaussiandistributioncorrespond-Three-dimensionalmoleculardynamicssimulationshaveingto310K.Pre-equilibrationofallthecasesisperformedbeenconductedonthetoplayercartilage−cartilageatomisticusingaconstanttemperaturemaintainedbyaNose−HoovermodelusingLAMMPS,anopen-sourceMDcodedevelopedthermostat,andtheconstantpressureisalsomaintainedbya38bytheSandiaNationalLaboratory.LAMMPSisapotentialNose−Hooverbarostat(NPT)ensembleatapressureof1atmtoolforconductingmolecular-scalesimulationsformetal,andtemperatureof310K(forinducingthermodynamicpolymers,andbiomoleculesandinvestigatingfrictionalproperties)for0.1ns.Thereafter,theabovementionedloads50https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
5Langmuirpubs.acs.org/LangmuirArticleFigure3.(a)Schematicrepresentationofthesimulationmethodologyforthepull-offtestofthetoplayercartilage−cartilageinterfaceatomisticmodel.Thetopblockisbeingpulled,whereasthedynamicsisstudiedonthedeformableatomsbothatthetopintracartilageinterfaceandtheintercartilageinterface.(b)Three-dimensionalrepresentationofthedifferentlayersconsideredandtheirroleinobtainingthenormalandfrictionalforcesforbothpull-offandfrictiontests.Forceiscalculatedonallthegreenatomsduetoallthepinkatomstoobtainthenormalandfrictionalforcesattheinterface.Theorangelayerrepresentsthethermostattedlayerwherethetemperatureisscaledastheslidingtakesplace.areappliedonthetopmostlayer(contactstressinMPa)tocartilage).Thenormalforcecalculatedalongthey-directionbringthesliderandsubstrateincontactwiththesubstrate.representstheforceofadhesion.AsfrictionforceistheAfterloading,foreachcase,postequilibrationisperformedresistancetoslidingmotion,similarly,theadhesivebehaviorisusingaconstantpressureof1atmandtemperatureat310KtheresistivepropertyofamaterialduringapullconductedusingaNose−Hooverbarostatandthermostatfor0.11ns.ThenormallyintheY-direction.loadedcasesareequilibrateduntilthetotalenergyandSlidingTest.Slidingsimulationsarecarriedoutforallthepressuregetstabilized.Thereafter,pull-offandslidingfourloadsL3.5,L7,L14,andL28forobtainingthefrictionalsimulationsareconductedforeachloadcase.ThedetailsofbehaviorofthetoplayerintercartilageatomisticmodelasthosetestsareasfollowsdependingonthephenomenontheyshowninFigure4a,c.Thetimestepchosenforslidingbehaviorsimulate.is0.5fs.PeriodicboundaryconditionshavebeenappliedalongPull-OffTest.Thepull-offtestsforallthefourloadcasestheXZ-planeandthenonperiodicalongtheY-axistosimulateareperformedasshownintheschematicinFigure3a.Theinfinitecontact.Thebottommostboundarylayerconsistingofobtainedre-equilibratedatomisticsystemsafterapplicationof2862atomsisfixedalongthey-direction.Thetopmostlayerofloadhavebeentestedfortheiradhesivenature.Thetopmostcollagenfragments(2850atoms)isappliedwithavelocityof1layerconsistingof2850atomsissubjectedtoapull-offvelocitym/stosimulateaslidingprocessbothperpendicularand(1m/s)inthey-directiontosimulatetheadhesivebehaviorofparalleltothecollagenaxesasshowninFigure4b.Figure4btheinterfaceduringthepull-off.Atlowervelocities,i.e.,0.1andpresentsboththelayerofthesliderandsubstrateatthe0.01m/s,considerablepullanddynamicshavenotbeeninterfaceinactualcontactduringloadingandsliding.Theobtainedduetolongerinteractiontimeleadingtoanelongatedshearrate(γ̇)is109s−1correspondingtothechosenstaticzoneandlongercomputationaltime.Thedistanceofsimulationvelocityissignificantlyhigherincomparisonbyseparationiscomputedasthedistanceofthecenterofmassordersofmagnitudetotheexperimentalvalues(γ̇<107s−1).(c.o.m)ofthetopmostmovinglayertothec.o.moftheinitialHighershearratesensurecalculationoffrictionforcesatthepositionoftheunderneathlayeritisdetachingfrom.Thesteadystate.Attemptingtoexactlysimulatethenanoscopicmaximumdistanceofseparationforthetopmostlayeris15Å.processforthespecifictimeperiodbecomescomputationallyThetimestepchosenforthesesimulationsis0.5fs.Theresource-intensive(severalnanoseconds).Therefore,thebottommostlayeriskeptfixedduringallthesimulations.choiceofslidingvelocityintherangeof1m/sorhigherbyThedeformableatomsareequilibratedwithacanonicalanorderresultsinacceleratedMDleadingtoovercomingof(NVT)ensembletosimulatethedynamicsoftheseatomsatTenergybarrierslikethetransitionfromthestatictodynamic=310K.Theinterfacialforcesarecomputedasthesummationregimequicklymakingitconvenienttobecomparablewithofforcesonthedeformableatomsofthetopsliderblockdueexperimentallyobtainedparametersutilizingcomputation51tothedeformableatomsofthesubstrateateachtimestepasoptimally.Theshearratescorrespondingtothesesimu-representedinFigure3b.Thegreenatomsrepresentthetoplationsarealsofoundtobehigher(γ̇>108s−1),butaprevioussurfaceofthecounterface(uppercartilage),whereasthepinkstudysuggeststhatdespitethedifferenceintime-andlength-atomsrepresentthetopmostlayerofthesubstrate(lowerscalecoefficientsoffrictionobtainedinexperimental51https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
6Langmuirpubs.acs.org/LangmuirArticleFigure4.Schematicandthree-dimensionalmodelforconductingnonequilibriummoleculardynamics.(a)Representationofthefrictionsimulationmethodologyasnormalforceisappliedonthetopmostlayerwiththemiddlelayerkeptataconstanttemperatureusingathermostatandinterfacialforcesarebeingobtainedonthebottommostlayeroftheslider.(b)SchematicforconductingfrictionsimulationsperpendicularalongtheX-axisandparallelalongtheZ-axis.Uppersliderblockmarkedindottedblueisslidagainstthelowersubstratebothparallelandperpendiculartothecollagenaxes.(c)Simulationmethodologyanddistributionofthelayerforconductingfrictionsimulationsintheformofasliderandsubstrateintheatomisticmodelastherepresentationshowninpanel(a).Eachofthecirclesrepresentsacollagenfragmentchosen.Thenormalandshearforcesarecomputedasthesummationofforcesobtainedateachtimestepalongthey-andx-directionsonthetopNewtonianatomsofthesliderduetotheNewtonianatomsofthesubstrate.Frictionalforcesareresolvedoppositetothemotionandequalinmagnitudeofshearforcesobtained.TheNewtonianatomsofthesliderarerepresentedingreenandthatofthesubstrateinpinkasshownintheforcemethodologydepictedinFigure3b.conditions,theycouldbecomparedtotheacceleratedMDbehavior.CHARMM27doesnotcapturebond-breaking52simulationresults.Fewstudiesalsosuggestfrictionbehavior,sochemicalreactivitycannotbemodeledinthissimulationresultstobeinsensitivetoslidingspeedsrangingstudy.overordersofmagnitudeforsystemsunderheavyload-InitialResultsandValidation.Accordingtopreviousing.47,53−55Inadditiontothis,thenanoscalemodeldevelopedmacroscalestudies,itisassumedthatinthepresenceofinthisstudyisforalocalizedcontactzone.Therefore,theadhesion,thefrictionforce−loadrelationtobeusedislocalizednanoscalecontactzonemodeledneartotheinterfaceFFN=+0μ(2)willbehavingshearratesthatareveryhighdespiteanaveragelowshearratevalueduringamacroscaleslidingprocess.ThewhereFisthecalculatedfrictionforce,F0isthepull-offinterimlayerofcollagenfragmentsofboththesliderandtheobtainedattheintercartilageinterface,μstandsfortheaveragesubstrateisthermostattedbycontrollingthetemperatureatfrictioncoefficient(COF),andNistheappliednormalforce.310K(bodytemperature)usingaLangevinthermostatforItisbeingobservedthatthepull-offobtainedatthestabilizingthesystem.Thechoiceofthermostatparametersisintercartilageinterfaceisnegligibleincomparisontohigherbasedoninitialsimulationsperformedtoobtainastablevalueappliednormalload(14,28nN),whereasduringapplicationofnormalforce,approximatetotheappliedload.Theoflowerloads(i.e.,3.5nN),thefrictionforceisequaltotheNewtonianatomsaretheatomsclosetotheinterfaceonadhesive/cohesivestrength.Thus,thisfrictionrelationreducesboththesliderandthesubstrate,andastheycontact,normal56totheAmontonslawaspredictedinapreviousMDstudy.andfrictionalforcesarecomputedonthoseatomsastheyareTherefore,forourcurrentsimulationsofcohesioncoupledcloserduringcontact.Theseatomsaresimulatedusingafriction,theAmontonslawissuitableforpredictionofthemicrocanonicalensemble(NVE)tomodelthefrictionalappropriateCOF.52https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
7Langmuirpubs.acs.org/LangmuirArticleF=μN(3)agreementwiththisavailableexperimentalfrictionstudyresultsdespitethecontrastinthetimeandlengthscales.whereFisthefrictionforcethatincludesthetangentialpull-offanddeformationcomponentandNisthenormalforce■obtainedatthelocalizedmolecular-scaleinterfaceateverytimeRESULTSANDDISCUSSIONMoleculardynamicssimulationsforpull-offandslidingstep.Therefore,computedCOFvaluestakeintoaccountthebehaviorusingthetoplayercartilage−cartilageunhydratedambientconditions(unhydratedinterfaces),atomspresentonatomisticmodelareemployedtostudytheadhesiveandeithersideoftheinterfaceandtheirattractiveorrepulsivefrictionalphenomenawithincreasingloadattheintercartilageinteraction,thedirectionofsliding,contactpressureapplied,interface.Moleculardynamicssimulationsforallfourloadandthepull-offgeneratedattheintercartilagesurfacecasesareperformedtopredicttheinteractionbothatthetoprepresentedintheatomisticmodel.interface(intracartilage)andlowerinterface(intercartilage)Alltheresultsanddiscussionsinthisstudyarebasedontheanddevelopanunderstandingofthecontactphenomenoninconsiderationthatthefrictionalforceoccurringatthetheabsenceoflubricantmolecules.Basedonthestudyofunhydratedinterfaceisdirectlyproportionaltothenormalinteractions,theeffectofslidingonthefrictionalbehavioratforceapplied.Thecurrentsimulationsaidinunderstandingthetheintercartilageinterfaceisobtainedinthedirectionsparallelunderlyingslidingphenomenonattheinterfaceofthecartilageandperpendiculartothecollagenaxes.withinaverylocalizedzoneunderunhydratedconditions.AdhesionBehaviorofArticularCartilageinUnhy-Therefore,itisdifficulttofindastudytovalidatethesameasdratedConditions.MDsimulationsareperformedonthemostofthestudiesareeitherconductedatthenanoscaleorunhydratedtoplayercartilageatomisticmodelforunder-havingstructuralhydration.AnotherimportantthingisthatstandingtheadhesivebehavioroftheintercartilageinterfaceasthemajorityoftheexperimentalstudiesareconductedinshowninFigure3.Normalforcesarecalculatedattwoenvironmentalconditions,whereasallthesemolecularinterfaces,intra-(topinterface)andintercartilageinterfacedynamicssimulationsareconductedinvacuum.Experiment-(whereblueandredatomscontact),tounderstandthebasedfrictionstudiesarefoundforcollagentypeI,whichisadhesionphenomenonwithincreasingload.Theatomsofthepresentinmostofthetissuesandplaysavitalbiomechanicaltopmostlayerofthemodelarepulledwithavelocityof1m/sroleinthebody.topredictthebehavioroftheremainingunhydratedinterfaceInanearlierexperimentalstudy,fibrillar,amorphous,andatthesteadystate.Thepullofthetopmostlayertowardthey-denaturedcollagentypeIIcoatedonmicagluedtoanAFMdirectionleadsthefreeatomsunderneathittodeformthebluemicrospheretipwithanothersimilarcollagentypeIIcoatedatomsandisusedtopredictthepull-offbehavioroftheintra-micasheetonasubstratearetestedfortheiradhesiveandandintercartilageinterfacesasshowninFigure5.frictionalpropertiesseparatelyinanunhydratedaswellaslubricinenvironment.10ThereportedvalueofthefrictionFigure5ashowsthevariationofnormalforceasafunctionofthedistanceofseparationofthetopmostlayerforthecoefficient(COF)underunhydratedconditionsforthisstudyintercartilageinterfaceatdifferentexternalloads(3.5,7,14,is0.25.Thestudyclaimsthatthefrictionalforceislessforand28nN),whereanegativeforceisindicativeofthepull-offfibrillarthanforamorphousanddenaturedcollagen.Theforce.Attheintercartilageinterface,withanincreaseinthepullcollagensurfacesexhibitahigherforceofadhesionofthetopmostlayer,thenormalforceontheblueatomsduecorrespondingtolongerpull-offdistancesintheabsenceoftotheredatomsreducesinitially.Tworegionsdemarked,i.e.,lubricinattheinterfaces.Acomparisonofourfrictionaltherelaxationzone(0−5Å)andthentheadherencezonesimulationsresultswiththepreviousexperimentbyChang’sgroup10isshowninTable1.(10−15Å),arerepresentedinblueandgolden,respectively.Duringrelaxation,forallfourcases(L3.5,L7,L14,L28),thenormalforceattheintercartilageinterfacedecreasesandtheTable1.ComparisonofCurrentMDStudieswithPreviouscollagenfragmentsreorienttheirtriplehelixstructure(thus,ExperimentalStudiestotalinteractionenergyreduces)toregaintoitspreviousmaterialpairCOFtypeofstudygeometrydimensionsbeforeloadingasshowninFigure5b.Thepullcollagen-on-collagen0.20−currentMDflatonflatactingatthetopmostlayerhasaweakereffectattheunhydratedatomistic0.75study(atomistic)intercartilageinterfacethantheresistiveforcegeneratedatthemodel(fibrillar)interfaceoppositetothepullduetotheheavyintermolecularunhydratedfibrillar0.25earliermicrosphereonflatlocking(cohesivesites)formedduetotheinterpenetratedcollagen−fibrillarexperimentalusingAFM(flat10collagenatomsinunhydratedconditions.Themainbackbonecollagenstudyonflat)chainofcollagensegmentsusedinthestudyisnotentangledwitheachother;instead,thesidegroups(fromaminoacidAll-atommolecularsimulationshavebeenconductedtogainresiduesformingthechain)areeithercreatingstronganunderstandingoftheunderlyingsurfacephenomenon,nonbondedinteractionsorgettinglockedintothesurfacewhereastheexperimentalstudiesconductedatthemacroscalenanocavitysitesformedattheinterfaceduetoappliedloadcapturethefrictionalbehavioronthescaleofcollagenfibers.Itconditions.Suchload-inducedintermolecularlockinghasalso57isconcludedthatthepresentstudyisveryspecifictoalocalbeenreportedinanearliernanotribologicalstudy.Thereareportionoffibrillarcollagen-to-collagencontactattheinterfacenointerchainorintrachainentanglementsconsideredintheofcartilage.Thespeed/shear-rateschoseninthecurrentpresentmodelasthismodelisofnanoscopiclengthscaleandsimulationsarehigherthanthoseintheexperimentalworkrepresentslocalizedcontactzones.referred,anditisdifficulttofindanexactcomparisonduetoTheL28caserequiresmoretime(correspondstothethelackofexperimentsatthelengthscaleofthesimulationsdistanceofseparation)fortherelaxationprocess,whereastheconducted.Therefore,itisbelievedthattherangeofCOFsL3.5caserequireslesstime.TheL3.5caseexhibitsslightpull-obtainedinthiscomputationalfrictionstudyresultsisinoffduetofewintermolecularlockings(interpenetration)53https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
8Langmuirpubs.acs.org/LangmuirArticleFigure5.(a)Variationcurveofnormalforceobtainedattheintercartilageinterfacevsdistanceofseparationofthetopblock.Thetopmostlayerispulledasshownintheschematic,andforceismeasuredontheblueatomsduetotheredatomstopredicttheadhesivebehavioroftheintercartilage.(b)Variationoftotalinteractionenergywiththedistanceofseparationatthetoplayerintercartilageinterface.Higherloadleadstohigherattractionduetoadecreaseinenergy,indicativeofcohesiveinteractionsandincreasedpull.(c)Pull-offtesttrajectoryvisualizationforvariousloadsduringthepull-offtest.Aminoacidshowninyellow(MET)ofthesliderisinterpenetrateddeeplyintothesubstrateandactsasacohesivesiteforlocalizedpullathigherloads,i.e.,theL28case.Moviesofthepull-offtestfor3.5and28nNloadsareprovidedintheSupportingInformation(MoviesS1andS2,respectively).formedbydiffusingattheinterfacialcontactzoneandthusisinterface,itislessenergeticfortheatomstointerlockeachattractedeasily.Intheadherencezone,theblueatomspossessotherthroughvanderWaalsinteractionattheintercartilageaminimumnormalforce,i.e.,residualforceneededtodetachinterfaceandformcohesivesitestoresistthedeformationtheblueatomsfromtheredatomsofthesubstrate.generatedbythepull.IntermolecularinteractionishighlyattractiveforhigherloadsAttheintracartilageinterface,thepull-offforceisfoundtoof14and28nN,incomparisontolowerloadsof3.5and7bemorepronouncedasitisnearesttothepulledtopmostnN.Thedifferenceintotalinteractionenergyforloadsof3.5layer.Thestudyofthebehavioroftheintracartilagehelpsinaand28nNispresentedinFigure5b.Asthetotalinteractionmoreaccurateunderstandingoftheadhesivebehavioroftheenergyattheinterfacedecreaseswithincreasingloadunhydratedcartilageattheatomisticscaleastheforcecutoffisindicatingthatathigherloads,theinteractionbetweenblue13Å.Thevariationofthetotalinteractionenergyandnormalatomsandlowersubstrateatomsishighlycohesive(attractive)forceexperiencedatthetopmostlayerduetotheunderneathinsteadofadhesiveinteraction.Inadditiontothis,thehigherlayerwiththedistanceofseparationwithanincreaseinloadistheloadapplied,thehighertheresidualforceactingnormallypresentedinFigure6.TheprocessoftheintracartilageduetotheformationofthisintermolecularlockingasshowninadhesionmechanismcanbecategorizedintosimilarthreeFigure5c.distinctregions,i.e.,relaxation,pull-offorstretching,andFigure5cshowsthecontactconfigurationattheatomicfracturezones,representedinblue,golden,andwhite.scaleattheintercartilageinterface.TheatomsoftheaminoThedistancesofseparation,whichisacharacteristicoftheacidsofthesliderarecompletelyinterpenetratedathighertime,arefoundtobe1,2,3,and4Å,correspondingtoanloads.Theseatomisticallylockedsitesorintermolecularincreaseinloadfrom3.5,7,14,to28nNtorelaxtotheirlockingsoccuracrossthesurfaceinbetweenthechainpreviousconfigurationsduringpullingasshowninFigure6a.segmentsofthesliderandthesubstrate.Inadditiontothis,Inthestretchingzone,forallthecases,pull-offisexperiencedathigherloads,theseyellow-coloredintermolecularlockingsatthetopinterface.Theeffectofthepullatthetopmostlayeractasanchorsresistingthepull-offandthuspreventthereducessomeforceattheintercartilageinterfaceformedbybreakingofthenonbondedinteractionattheintercartilageheavyintermolecularlocking.Theseinterlockedcohesivesitesinterface.Contrarytothis,atlowerloads,theatomsoftheleadtounfoldingandstretchingofthecollagenfragmentsupperbedhavelessinterpenetratedatoms,andthus,theyarelaterallyperpendiculartothecollagenaxisandfinallyattractedtowardthesubstrateresultinginaverylowpull-offdetachment.Thetypicaldynamicsofcollagenfragmentsinforce.Moreover,forallthecases,norelativeseparationatthetheL28caseattheintracartilageinterfaceduringthepull-offinterface(blueandred)isobserved.Therefore,itisclaimedtestispresentedinFigure6c.Thetoplayerisobservedtothatathigherload,intheabsenceofanylubricantattheundergobendingfromtheinitiationoffracturetothefinal54https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
9Langmuirpubs.acs.org/LangmuirArticleFigure6.(a)Variationcurveofnormalforceobtainedattheintracartilageinterfacevsdistanceofseparationofthetopblock.(b)Variationoftotalinteractionenergyatthetopsliderbedsurfaceatomsduetothesubstrateatoms.Theincreaseinloadleadstoheavyintermolecularlockingandlongerstretchinglengthofcollagenfragments.(c)Pull-offtesttrajectoryatvariousstagesoftheadhesiontest.Highcohesionattheintercartilage44interfaceleadstodetachmentofthetopmostlayerattheintracartilageinterface.RenderedusingVMD.separation.Usually,thetoplayerceasestohaveaneffectonregionoftheplotexplainshowthetopmostcollagenfragmenttherestofthemodelfromd=15Åbutcompletelygetslayerisdetachedfromthewholeatomisticmodelsignifyingthedetachedatd=17Å.fractureofthemodelduetopull-off.Duetolimitation(cutoffItisfoundthatthereisastronginfluenceofadherenceofdistance)ofcalculationinmoleculardynamics,onlyasmalltheintercartilageinterfaceontheintracartilageinterface.rangeofstretchingofthecollagenfragmentcouldbecapturedDependingonthenormalforceapplied,thechangeintheseinthesesimulations.Moreover,itisclearthatintheabsenceofload-inducedintermolecularlockingattheinterfaceleadstoanylubricantorwatermoleculesinbetween,theunhydratedincreasedlocalizedstretchingandthepull-offforceaslistedincollagenfragmentsdoresultinveryhighstretchinglengths.Table2.Thehighertheload,theatomsattheinterfaceandThiscohesivebehaviorisattributedtotheheavyintermo-lecularlockingsitesandclosepresenceofatomsduringloadingTable2.DependenceofPull-offForcesontheLoadAppliedinanunhydratedenvironment.Thisisinagreementwithpreviouspull-offexperimentalstudiesperformedonunhy-casesstretchingzone(Å)pull-offforceobtained(nN)dratedcollagen−collagentypeIIsurfacescoatedontheAFML3.53−65microspheretipandmicasubstrate.L74−86EffectofLoadontheFrictionalBehaviorofL147.1−146UnhydratedArticularCartilage.MDsimulationstocaptureL287−156thefrictionalbehaviorareperformedasshowninFigure4cforalltheloadcases.Althoughthearrangementofthecollagenwithinthechainsofthesliderandsubstratearemorefragmentattheintercartilageinterfaceistangential,thefrictioninterpenetratedordiffusedandrequirehigherstretchingtimesimulationmustensurethatslidinginbothperpendicularand(length).Thestretchingzoneliesintherangeof3−18Å,parallel,i.e.,thex-andz-directions,respectively,topredictthecorrespondingtoanincreaseintheloadfrom3.5to28nN.overallfrictionalbehaviorofthetoplayercartilage−cartilageThepull-offforcesexperiencedinthecasesare5,6,6,and6unhydratedinterfacialcontactasshowninFigure4b.InallthenN,respectively,fortheL3.5,L7,L14,andL28cases.Thefinalcases(L3.5,L7,L14,L28),themaximumdisplacementofthe55https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
10Langmuirpubs.acs.org/LangmuirArticleFigure7.(a)Nanoscalefrictionforcevariationwithtimeinpicosecondsatthetoplayerintercartilageinterfacewhileslidingperpendiculartothecollagenaxis.(b)Normalforcevariationwithtimeforperpendicularsliding.(c)Nanoscalefrictionforcevariationagainsttimewhileslidingparalleltothecollagenaxis.(d)Normalforcevariationwithtimeforparallelsliding.Threezonesofthefrictionalprocess,staticzone,geometry-dependent,anddeformationzone,showninblue,golden,andwhite,respectively.Averagefrictioncoefficient(COF)calculatedinthegolden-coloredzone.topslideriskeptatd=15Å(t=1.5ns)inboththedirectionsinterlockingsdevelop,whichresistthemovementatthetopredicttheoverallsurfacefrictionalbehavioroftheinterface.Thenormalforceobtainedattheintercartilageunhydratedintercartilageinterfaceandobtainacomprehensiveinterfaceisalmostequaltotheappliednormalforceobtainedunderstandingoftheatomisticmechanismoccurring.AchoicefromthereactionforceatthecohesivesitesasshowninFigureofahighershearrate(γ̇>108s−1)ensuresthefrictional7b,d.Theanalysisoftheslidingsimulationtrajectoriespredictspropertytobecalculatedinthesteady-statedynamicregionthatthefrictionalprocessexistsinthreezonesforboth58comparabletotheorderofexperiments.perpendicularandparallelslidings,i.e.,initiallystaticzone,theThefrictionalforceandnormalforcebehaviorsofthegeometry-dependentsliding,andfinallytheadhesion-depend-collagenfragmentsslidperpendicularattheintercartilageentdeformationzone,asshowninblue,golden,andwhite,interfaceareillustratedinFigure7a,bandforparallelslidinginrespectively.ThefrictionforceincreaseslinearlyforalltheloadFigure7c,d.AsperthesimulationmethodologyinFigure4c,casesirrespectiveofthedirectioninthestaticzone.Thereafter,slidingisconductedintheformofasliderandsubstratemadethefrictionforceisrelativelyconstantforhigher-loadcases(14upofcollagenfragments.Thefrictionalforceandnormaland28nN),whereasitvariesslightlyforthelowest-loadcaseforcesarecomputedbysummingupalltheforcesinthex-and(3.5nN)accordingtothemolecularsurfacemorphologytheyy-directions,respectively,onthecollagenfragmentsrepre-slideupon.Therefore,thiszoneistermedasthegeometry-sentedusingblueatomsduetothatofredatomsateachtimedependentzone.Finally,thefrictionforcecorrespondingtostep.Theobtainedfrictionalforcevariationswithslidingthehigher-loadcasesincreasesdrastically,anddeformationdistanceforcasesundergoingperpendicularmovementL3.5X,takesplacewithintheslidingloadedcasesinthedeformationL7X,L14X,andL28XareshowninFigure7a.zone.First,theinitiationofslidingenhancesfrictionalforceFrictionalforcesincreasewithariseintheappliednormallinearly,andalthoughthetopmostportionofthesliderstartsforceonthebluelayerinbothperpendicularandparalleltomove,therestofthefreeatomsarenotabletomoveduetoslidingsasshowninFigure7a,c.Frictionforcecorrespondingtheintermolecularlockingattheintercartilageinterface.ThetotheL28XandL28Zcasesarehigherthantheotherloadsfrictionforceincreasescorrespondingtoamovementfortimetduetointermolecularlylockedsitesattheinterface.The=400psinperpendicularanduptot=500pswhileslidingfrictionforcefortheloadcasesvariesintheorderofL28>L14paralleltothecollagenaxis.Thereafter,frictionforcegradually>L7>L3.5suchthatathigherload,moreload-inducedbecomesconstantforbothdirections.56https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
11Langmuirpubs.acs.org/LangmuirArticleFigure8.(a)Schematicrepresentinggeometry-dependentmovementandfrictioninperpendicularsliding.Thebluearrowrepresentsthedirectionofthemotionoftheupperslidercollagenlayeronthesubstratecollagenlayer.(b)Geometry-dependentmovementandfrictioninparallelsliding.(c)Stagesofslidingofthetoplayercartilage−cartilageunhydratedatomisticmodelperpendiculartothecollagenaxesindicatingthethreezonesofthefrictionprocess,i.e.,initialzone,geometry-dependentzone,anddeformationzone.Thereddottedboxshowsthemovementofthetopmostlayerinthex-direction,andthebottommostreddottedboxshowsthefixedregionofthesubstrateforfrictionalsimulations.(d)Stagesofslidingoftheunhydratedatomisticmodelparalleltothecollagenaxes.AllthecollagenfragmentsareshownintuberepresentationofVMD,andtheblueand44redtubesrepresentthetopmostportionsofthesliderandthesubstrate,whileotherportionsaremarkedingray.Thegeometry-dependentzonet=(400−1000ps)formovementofthetopmostlayerkeepingtheinterfaceintact.perpendicularandt=(500−1000ps)correspondstotheCohesivezonesactasanchoragesexhibitinglocalizedpullforvariationoffrictionalforcesduetothegeometryofthesurfacedisengagementthroughtheselockedfeaturesfromthepassingthroughasshowninFigure8.Thecollagenfragmentssubstratewhilesliding,thusincreasesfrictionasshowninattheintercartilageinterfaceexperienceastick−slipbehaviorFigure9b.Asdiscussedearlier,theseintermolecularlockingsofbasedontheclosenessofatoms.ItisevidentfromFigure7ctheblueatomsofthetopsliderinsidethesubstrateareload-thatparallelslidingleadstoaslippingeffect,whichexhibitsadependentandincreasewithanincrementinload.Itissmoothernaturethantheperpendicularsliding.ThedifferenceobservedthatfortheL28Xcase,thebluecohesivesitesexertinfrictionalforcecorrespondingtotheincrementinload(14resistancetomovementbychangingtheirorientationduringto28nN)ishigherintheparallelcasethaninperpendicularslidingfrom(t=500to1000ps)incomparisontotheL3.5Xsliding.Thisisattributedtothedifferenceinmorphologyandcase.ThestagesofslidingforbothperpendicularandparallelnumberofH-bondsformedatthemolecularinterfaceasslidingsareillustratedinFigure8c,d,respectively.TheshownlaterinFigure11b.Themacroscopiccontactareaisadhesion-dependent/deformation/interlayerslidingzone(t=estimatedtobealmostthesameforbothparalleland1000−1500ps)forbothperpendicularandparalleldepictstheperpendicularcasesandhencecannotbeusedforunder-deformationbehaviorofthesliderandsubstratewithmotion.standingthefrictionbehavior.TheloadingattheinterfaceTheunhydratedcohesivecontactattheinterfaceleadstoleadstothreetypesofphysicalinteractionshowninFigure9a,almostnomotionattheinterface(blueandredportions),andTypeAinwhichatomsacrosstheboundaryarefar,TypeBfurtherslidingleadstofracture/interlayerslidingmoresuitablewherethesliderandsubstrateatomsarenear,andTypeCforaparallelcaseasshowninFigure8d.Inthecurrentwheretheatomsoftheslidercrosstheboundaryanddiffusesimulationstudy,theinterfacialcontactandfrictionprocessintothesubstrate.TheloadcaseofL3.5mostlyhasTypeAcomprisephysicalnonbondedinteractions.Thereisainteraction,TypesA,B,andCarefoundinL7andL14,contributioninfrictionfromboththeH-bondsandthevanwhereasL28ismostlyTypeC.Therefore,theatomisticderWaalsforces.However,theH-bondformationandmorphologyofthecontactafterloadingsuggeststhatthesebreakage(Coulombicinteraction)areobservedtocontributeintermolecularlockingsitesactascohesivezonesandfacilitatesignificantlytothefrictionprocessincomparisontovander57https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
12Langmuirpubs.acs.org/LangmuirArticleFigure9.(a)Typeofinteractionattheintercartilageinterface.Theblueatomsaretheatomsofthebottommostlayerofthetopslider,whichisunderpull,andtheredatomsarethoseofthelowersubstrate.Loadbearinghappensatsuchdiscretesites,whichconsistofTypesA,B,andCinteractions.(b)Snapshotsoftheintercartilageinterfaceduringthefrictionphenomenonslidingperpendicularly(x-direction).Athigherload,the44cohesivesitesrepresentedinbluearestretchedandofferlocalizedpulltoresistthedeformationduetosliding.RenderedusingVMD.Figure10.Interlayerslidingandinitiationofslidingwithload.(a)Interlayerslidingdeformationinslidingparallel.(b)Variationofinterlayerslidinginitiationwithload.Athigherload,thisdeformationisearlier.Moviesofinterlayerslidingfor3.5and28nNloadsindiferrentdirectionsareprovidedintheSupportingInformation(MoviesS3,S4,S5,andS6,respectively).Waalsinteractionduetoitshigherstrength.AsignificantforboththecasesasshowninFigure7a,c.ThisisanalogoustodifferenceinthefrictionalforceisobservedduetotheH-theslidingmechanismproposedinpreviousworkonvarying59bondsinboththeslidingdirectionsasshowninFigures7a,blateraldistancesbetweencollagen.Interlayerslidingismoreand11b.InparallelslidingasshowninFigures8dand10a,theprevalentathigherloadsof14and28nN,i.e.,atalowerinterimlayerjustabovethebluetubesdetachesduetoweakerslidingdistance,andtheinitiationofinterlayerdeformationvanderWaalsinteractionandthereisareductioninthecommencesearlier,asshowninFigure10b.ThenumberofH-numberofH-bondsincomparisontoperpendicularslidingatbondsformedbeforetimet<1000psisalmostconstant;thus,theintercartilageinterfacewherecohesionispredominantandalltheloadcasesslidingparallelexperiencehigherfrictionalinterlayerslidinginitiatesasindicatedinFigure11b.TheforcethanperpendicularslidingasshowninFigure11b.deformationintheformofinterlayerslidingleadstoreductionEffectofLoadontheAverageFrictionCoefficientinthecorrespondingloadduetothenumberofatomsinthe(COF).Averagefrictioncoefficient(COF)foralltheloadcasescontactzoneattheinterface;thus,frictionalforcedecreases.Iniscomputed,consideringthefrictionandnormalforcescurrentsimulations,duetothelesslateraldistancebetweentheobtainedineachcaseintheirgeometry-dependentzones.Thecollagenfragments,atomsareverycloseintheL28XandL28Znormalloadappliedisnotdirectlyattheinterface;thus,thecases;thus,deformationishighercorrespondingtot>1000psnormalforceobtainedattheslidingintercartilageinterfaceis58https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
13Langmuirpubs.acs.org/LangmuirArticleFigure11.Comparisonoftheaveragefrictioncoefficient(COF)obtainedinparallelandperpendicularsliding.(a)VariationoftheCOFwithloadandslidingorientation.COFhigherintheparallelcaseduetotheconstantnumberofH-bondsattheinterface.(b)NumberofH-bondswithrespecttoslidingdistance(ford=1Å,timet=100ps).Atd=7Å,thenumberofH-bondsdipsandinterlayerslidinginitiates.usedinordertocalculatetheCOF.AlineardependenceofnumberofH-bondsasshowninFigure11b.COFvaluesfrictionalforcewiththenormalforceisconsidered,andtheobtainedarelowerinthecaseofperpendicularthaninparallelAmontonslawisusedforCOFcalculation.TherangeofCOFsmotionduetothegeometryoftheatomisticinterfaceandalsoobtainedfortheintercartilageinterfaceatomisticmodelforvariationinthenumberofH-bondsduetodeformationasslidingmotioninbothperpendicularandparalleldirectionsisshowninFigure11a,b.TheCOFdecreaseswithincreasing0.20−0.75.ThevaluesobtainedineachcasewiththeloadareloadasthenumberofatomsinteractingattheinterfaceshowninTable3whereper-andpar-representperpendicularincreaseswithloadasshowninTable3.Withanincreaseinload,interlayerslidingisalsoresponsibleforadecreaseintheTable3.ComparisonofCOFsObtainedinPerpendicularasfrictionalforceincomparisontootherloads.wellastheParallelMovementoftheSliderInunhydratedconditions,intercartilageinterfacialcohesionispredominantoverintralayerinteractionsleadingtoload(nN)COF(μ)perCOF(μ)pardeformation(interlayersliding)andfailure.Athigherloads,3.50.610.75thepull-offforcesincreaseduetoTypeCintermolecular70.420.45lockingattheintralayerinterfacesleadingtohigherstretching140.230.34lengthandfracture.Interlayercohesionleadstomolecular280.200.26stretchinganddeformationattheunhydratedinterface.ThestretchingdistancefollowstheorderL28>L14>L7>L3.5andparallelslidings,respectively.TheCOFforallthecasesfortheloadcases.NanoscaleadhesionattheintercartilagevariesintheorderofL28 14Langmuirpubs.acs.org/LangmuirArticlehydration,andlengthscale.Thus,theacquiredresultsinthetopullandstretchingofcollagenfragments.Theoverallcurrentstudyshouldbeconsideredtogetherwiththeaveragecoefficientoffriction(COF)obtainedatthecomputationalandgeometricassumptionsmadeintheseintercartilageatomisticinterfaceisintherangeof0.20−0.75MDsimulations.First,allthesimulationshavebeenconductedforalltheslidingtests.TheCOFreducedwithanincreaseininacompletelyunhydratedandvacuumenvironment.Second,loadduetovariationintheintermolecularlockingformedattheatomisticmodelisaverysmallnanocontactbetweenthetheintercartilageinterface.TheseCOFvalueslieintherangemicrofibrilsandsimulatesalocalizedcohesion,friction,andofvaluesavailableintheliterature.Forparallelsliding,thedeformationmechanism.AschematicrepresentingthediscreteCOFisfoundtobehigherateachloadcaseduetothenanoscalecontactandcomparisonofscaleonanasperityofconstantnumberofH-bondsthanthatforperpendiculartoplayercartilage−cartilagecontactandthemechanismofslidingwherethenumberdecreases.Thefrictionalbehavioratnanoscaleadhesionandfrictionmechanismareshowninthistoplayercartilage−cartilageinterfaceisfoundtoexistinFigure12.thethreezoneswhilesliding,i.e.,initiallystaticzone,thegeometry-dependentsliding,andfinallythedeformationzone.Athigherload,underunhydratedconditions,theatomisticinteractionattheintercartilageinterfacealterssignificantlyleadingtocohesion,stick−slipattheintercartilageinterfaceduringinitialandgeometry-dependentzones,andinterlayerslidingoftheintermediatelayerduringthedeformationzone.Interlayerslidingspecificallyoccursintheparallelslidingcaseduringthedeformationzone.ItisalsoobservedthatH-bondsplayamajorrolecomparedtovanderWaalsforcesintheoriginsoffrictionalforcesinthecurrentunhydratedsystem.Thispredictsthattheadhesiveandfrictionalpropertiesaredependentontheatomisticinteractionattheinterfaceandstructuralhierarchyofthetissue.Overall,analysissuggeststhatthesimulationmethodologyandatomisticmodeldevelopedforthecartilage−cartilagebiotribologicalstudyareappropriateforunderstandingtheeffectofloadonthecollagenfragmentsandtheirroleintheloaddistributionandprovidesinsightsintotheatomisticcontactphenomenonattheunhydratedcartilageinterface.Figure12.Comparisonofscaleandlocalizedcontactmechanism.Furthermore,thisinvestigationrevealsnanomechanicalunder-Theredandtheblackcirclesdenotetheasperity−asperitycontactatstandingoftheoriginsofadhesionandfrictioninpeptidethetoplayer.Amagnifiedviewoftheareaofinterestpresentsagroupsattheunhydratedcartilage−cartilageinterfaceatthedifferenceinscaleofthesurfaceandtheMDmodeldevelopedinthepresentstudy.nanoscaleandcontributestowarddevelopmentofalternative■approachesinartificialimplantresearch.ASSOCIATEDCONTENT■CONCLUSIONS*sıSupportingInformationInpresentstudy,atoplayercartilage−cartilagecontactTheSupportingInformationisavailablefreeofchargeatatomisticmodelisproposedandNEMDsimulationsarehttps://pubs.acs.org/doi/10.1021/acs.langmuir.0c02283.performedforinvestigationsontheadhesiveandfrictionalCalculationofinterfacialforcesinthreedirections;behaviorofjointsuponloadinginunhydratedconditions.Tocalculationofequivalentcontactstress;MDsimulationunderstandtherelevantmechanismsofloading,contact,anddetailsintableformat(PDF)shearingattheinterfacefromanatomisticperspective,thePull-offtrajectoryoftheintercartilagemodelat3.5nNatomisticmodelwasappliedwitharangeofloadssimulatingload.Shortdurationstretchingobservedattheintra-thestressattheintercartilageinterface.Duringpull-offandcartilageinterfacebeforefracture(MPG)frictionaltests,thetoplayersoftheloadedcasesweremovedPull-offtrajectoryoftheintercartilagemodelat28nNequaltothediameterofthecollagenfragmentsinthey-andx-load.Heavyentanglementleadstoformationofcohesivedirections,respectively.Thepull-offtestindicatedthepresencesitesandlargestretchingattheintracartilageinterfaceofseveralcohesivesitesattheintercartilageinterfaceinthebeforefracture(MPG)formofload-dependentintermolecularlockingintheabsenceofafluidfilm,whichresultedinhigherstretchinglength(bySlidingdynamicsoftheintercartilagemodelat3.5nNanchoring)whenpulledathigherloads,i.e.,theL14andL28loadwhenslidinthedirectionperpendiculartothecases.Thepull-offforceattheintracartilageinterfaceincreasedcollagenaxis.Lessdeformationforfewcohesivesitesfrom5to6nNwithloadduetoincreasedintermolecularformed(MPG)lockingatthesesitesoftheinterface.ThesecohesivesitesSlidingdynamicsoftheintercartilagemodelat28nNhighlydeformthetissuewhileshearingduetolocalizedpullloadwhenslidinthedirectionperpendiculartothethroughtheseintermolecularlockingsattheinterfacesatcollagenaxis.Heavycompressionandslidingleadtohigherloads,whichcouldleadtowear.heavydeformationasmanycohesivesitesexertlocalizedTheslidingtestconductedinbothparallelandperpendic-pullonthecollagenfragments(MPG)ularcasesrevealedhigherfrictionalforcesthanreportedvaluesSlidingdynamicsoftheintercartilagemodelat3.5nNforcartilageduetointermolecularlockingofresiduesleadingloadwhenslidinthedirectionparalleltothecollagen60https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62 15Langmuirpubs.acs.org/LangmuirArticleaxis.Interlayerslidingisdelayedbecauseofthepresence(11)Coles,J.M.;Chang,D.P.;Zauscher,S.MolecularMechanismsoffewcohesivesitesattheinterface(MPG)ofAqueousBoundaryLubricationbyMucinousGlycoproteins.Curr.Opin.ColloidInterfaceSci.2010,15,406−416.Slidingdynamicsoftheintercartilagemodelat28nN(12)Seror,J.;Zhu,L.;Goldberg,R.;Day,A.J.;Klein,J.loadwhenslidinthedirectionparalleltothecollagenSupramolecularSynergyintheBoundaryLubricationofSynovialaxis.InterlayerslidingispredominantandoccursearlierJoints.Nat.Commun.2015,6,6497.forlocalizedpullexertedatcohesivesitesattheinterface(13)Zappone,B.;Ruths,M.;Greene,G.W.;Jay,G.D.;Israelachvili,(MPG)J.N.Adsorption,Lubrication,andWearofLubricinonModelSurfaces:PolymerBrush-LikeBehaviorofaGlycoprotein.Biophys.J.2007,92,1693−1708.■AUTHORINFORMATION(14)Klein,J.MolecularMechanismsofSynovialJointLubrication.Proc.Inst.Mech.Eng.,PartJ2006,220,691−710.CorrespondingAuthor(15)Trevino,R.L.;Pacione,C.A.;Malfait,A.M.;Chubinskaya,S.;DevendraK.Dubey−MechanicalEngineeringDepartment,Wimmer,M.A.DevelopmentofaCartilageShear-DamageModeltoIndianInstituteofTechnologyDelhi,NewDelhi110016,InvestigatetheImpactofSurfaceInjuryonChondrocytesandIndia;orcid.org/0000-0003-1264-1422;ExtracellularMatrixWear.Cartilage2017,8,444−455.Email:dkdubey@mech.iitd.ac.in(16)Liamas,E.;Connell,S.D.;Ramakrishna,S.N.;Sarkar,A.ProbingtheFrictionalPropertiesofSoftMaterialsattheNanoscale.AuthorsNanoscale2020,12,2292−2308.AbhinavaChatterjee−MechanicalEngineeringDepartment,(17)Han,L.;Dean,D.;Daher,L.A.;Grodzinsky,A.J.;Ortiz,C.IndianInstituteofTechnologyDelhi,NewDelhi110016,CartilageAggrecanCanUndergoSelf-Adhesion.Biophys.J.2008,95,India4862−4870.SujeetK.Sinha−MechanicalEngineeringDepartment,Indian(18)Bevill,S.L.;Thambyah,A.;Broom,N.D.NewInsightsintotheInstituteofTechnologyDelhi,NewDelhi110016,IndiaRoleoftheSuperficialTangentialZoneinInfluencingtheMicrostructuralResponseofArticularCartilagetoCompression.Completecontactinformationisavailableat:OsteoarthritisCartilage2010,18,1310−1318.https://pubs.acs.org/10.1021/acs.langmuir.0c02283(19)Orford,C.R.;Gardner,D.L.UltrastructuralHistochemistryoftheSurfaceLaminaofNormalArticularCartilage.Histochem.J.1985,Notes17,223−233.Theauthorsdeclarenocompetingfinancialinterest.(20)Han,B.;Nia,H.T.;Wang,C.;Chandrasekaran,P.;Li,Q.;Chery,D.R.;Li,H.;Grodzinsky,A.J.;Han,L.AFM-Nanomechanical■Test:AnInterdisciplinaryToolThatLinkstheUnderstandingofACKNOWLEDGMENTSCartilageandMeniscusBiomechanics,OsteoarthritisDegeneration,TheauthorsthanktheIITDelhiHighPerformanceandTissueEngineering.ACSBiomater.Sci.Eng.2017,3,2033−2049.Computing(HPC)facilityforcomputationalresources,using(21)Han,L.;Grodzinsky,A.J.;Ortiz,C.Nanomechanicsofthewhichpartofthisworkwasperformed.AuthorsalsothankDr.CartilageExtracellularMatrix.Annu.Rev.Mater.Res.2011,41,133−AnujSharma,IITDelhi,forhelpfulfeedbackonthework.168.(22)Bateman,A.UniProt:AWorldwideHubofProteinKnowledge.■NucleicAcidsRes.2019,47,D506−D515.REFERENCES(23)Schlaich,A.;Kappler,J.;Netz,R.R.HydrationFrictionin(1)Inamdar,S.R.;Knight,D.P.;Terrill,N.J.;Karunaratne,A.;Nanoconfinement:FromBulkviaInterfacialtoDryFriction.NanoCacho-Nerin,F.;Knight,M.M.;Gupta,H.S.TheSecretLifeofLett.2017,17,5969−5976.Collagen:TemporalChangesinNanoscaleFibrillarPre-Strainand(24)Antipova,O.;Orgel,J.P.R.O.InSituD-PeriodicMolecularMolecularOrganizationduringPhysiologicalLoadingofCartilage.StructureofTypeIICollagen.J.Biol.Chem.2010,285,7087−7096.ACSNano2017,11,9728−9737.(25)Dubey,D.K.;Tomar,V.RoleoftheNanoscaleInterfacial(2)Klein,J.HydrationLubrication.Friction2013,1,1−23.ArrangementinMechanicalStrengthofTropocollagen-Hydroxyapa-(3)Kienle,S.;Boettcher,K.;Wiegleb,L.;Urban,J.;Burgkart,R.;tite-BasedHardBiomaterials.ActaBiomater.2009,5,2704−2716.Lieleg,O.;Hugel,T.ComparisonofFrictionandWearofArticular(26)Gottardi,R.;Hansen,U.;Raiteri,R.;Loparic,M.;Düggelin,M.;CartilageonDifferentLengthScales.J.Biomech.2015,48,3052.Mathys,D.;Friederich,N.F.;Bruckner,P.;Stolz,M.Supramolecular(4)Macconaill,M.A.TheFunctionofIntra-ArticularFibrocarti-OrganizationofCollagenFibrilsinHealthyandOsteoarthriticlages,withSpecialReferencetotheKneeandInferiorRadio-UlnarHumanKneeandHipJointCartilage.PLoSOne2016,11,e0163552.Joints.J.Anat.1932,66,210−227.(27)Silverberg,J.L.;Barrett,A.R.;Das,M.;Petersen,P.B.;(5)McCutchen,C.W.Thefrictionalpropertiesofanimaljoints.Bonassar,L.J.;Cohen,I.Structure-FunctionRelationsandRigidityWear1962,5,1−17.PercolationintheShearPropertiesofArticularCartilage.Biophys.J.(6)Higginson,G.R.;Litchfield,M.R.;Snaith,J.Load-Displace-ment-TimeCharacteristicsofArticularCartilage.Int.J.Mech.Sci.2014,107,1721−1730.1976,18,481−486.(28)Shao,J.;Lin,L.;Tang,B.;Du,C.StructureandNano-(7)Dowson,D.ElastohydrodynamicandMicro-Elastohydrody-mechanicsofCollagenFibrilsinArticularCartilageatDifferentStagesnamicLubrication.Wear1995,190,125−138.ofOsteoarthritis.RSCAdv.2014,4,51165−51170.(8)Jay,G.D.;Harris,D.A.;Cha,C.-J.BoundaryLubricationby(29)Chan,S.M.T.;Neu,C.P.;DuRaine,G.;Komvopoulos,K.;LubricinIsMediatedbyO-Linkedβ(1-3)Gal-GalNAcOligosacchar-Reddi,A.H.AtomicForceMicroscopeInvestigationoftheBoundary-ides.GlycoconjugateJ.2001,807−815.LubricantLayerinArticularCartilage.OsteoarthritisCartilage2010,(9)Chan,S.M.T.;Neu,C.P.;Komvopoulos,K.;Reddi,A.H.18,956−963.DependenceofNanoscaleFrictionandAdhesionPropertiesof(30)Dong,Y.;Li,Q.;Martini,A.MolecularDynamicsSimulationofArticularCartilageonContactLoad.J.Biomech.2011,44,1340−AtomicFriction:AReviewandGuide.J.Vac.Sci.Technol.,A2013,1345.31,030801−030824.(10)Chang,D.P.;Guilak,F.;Jay,G.D.;Zauscher,S.Interactionof(31)Dai,L.;Minn,M.;Satyanarayana,N.;Sinha,S.K.;Tan,V.B.C.LubricinwithTypeIICollagenSurfaces:Adsorption,Friction,andIdentifyingtheMechanismsofPolymerFrictionthroughMolecularNormalForces.J.Biomech.2014,659−666.DynamicsSimulation.Langmuir2011,14861−14867.61https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62 16Langmuirpubs.acs.org/LangmuirArticle(32)Mo,Y.;Turner,K.T.;Szlufarska,I.FrictionLawsatthe(52)Porras-Vazquez,A.;Martinie,L.;Vergne,P.;Fillot,N.Nanoscale.Nature2009,457,1116−1119.IndependencebetweenFrictionandVelocityDistributioninFluids(33)Dai,L.;Sorkin,V.;Zhang,Y.-W.EffectofSurfaceChemistryonSubjectedtoSevereShearingandConfinement.Phys.Chem.Chem.theMechanismsandGoverningLawsofFrictionandWear.ACSPhys.2018,20,27280−27293.Appl.Mater.Interfaces2016,8,8765−8772.(53)Chandross,M.;Grest,G.S.;Stevens,M.J.Frictionbetween(34)Gadomski,A.;Bełdowski,P.;Rubì,J.M.;Urbaniak,W.;Auge,́AlkylsilaneMonolayers:MolecularSimulationofOrderedMono-W.K.,II;Santamarìa-Holek,I.;Pawlak,Z.SomeConceptuallayers.Langmuir2002,18,8392−8399.ThoughtstowardNanoscaleOrientedFrictioninaModelofArticular(54)Gautieri,A.;Buehler,M.J.;Redaelli,A.DeformationRateCartilage.Math.Biosci.2013,244,188−200.ControlsElasticityandUnfoldingPathwayofSingleTropocollagen(35)Bełdowski,P.;Weber,P.;Andrysiak,T.;Auge,W.K.,II;́Molecules.J.Mech.Behav.Biomed.Mater.2009,2,130−137.Ledzinski,D.;DeLeon,T.;Gadomski,A.AnomalousBehaviorof́(55)Black,J.E.;Iacovella,C.R.;Cummings,P.T.;McCabe,C.HyaluronanCrosslinkingDuetothePresenceofExcessPhospholi-MolecularDynamicsStudyofAlkylsilaneMonolayersonRealisticpidsintheArticularCartilageSystemofOsteoarthritis.Int.J.Mol.Sci.AmorphousSilicaSurfaces.Langmuir2015,31,3086−3093.2017,18,2779.(56)Dai,L.;Sorkin,V.;Sha,Z.D.;Pei,Q.X.;Branicio,P.S.;Zhang,(36)Bełdowski,P.;Andrysiak,T.;Mreła,A.;Pawlak,Z.;Auge,W.́Y.W.MolecularDynamicsSimulationsontheFrictionalBehaviorofK.,II;Gadomski,A.TheAnomaliesofHyaluronanStructuresinaPerfluoropolyetherFilmSandwichedbetweenDiamond-like-CarbonPresenceofSurfaceActivePhospholipidsMolecularMassDepend-Coatings.Langmuir2014,30,1573−1579.ence.Polymers2018,10,273.(57)Xu,Q.;Li,X.;Zhang,J.;Hu,Y.;Wang,H.;Ma,T.Suppressing(37)Beldowski,P.;Mazurkiewicz,A.;Topolinski,T.;Máłek,T.NanoscaleWearbyGraphene/GrapheneInterfacialContactHydrogenandWaterBondingbetweenGlycosaminoglycansandArchitecture:AMolecularDynamicsStudy.ACSAppl.Mater.PhospholipidsintheSynovialFluid:MolecularDynamicsStudy.Interfaces2017,40959−40968.Materials2019,12,2060.(58)Bair,S.;McCabe,C.;Cummings,P.T.Comparisonof(38)Plimpton,S.FastParallelAlgorithmsforShort-RangeNonequilibriumMolecularDynamicswithExperimentalMeasure-MolecularDynamics.J.Comput.Phys.1995,117,1−19.mentsintheNonlinearShear-ThinningRegime.Phys.Rev.Lett.2002,(39)Ebrahimi,S.;Ghafoori-Tabrizi,K.;Rafii-Tabar,H.Molecular88,No.058302.DynamicsSimulationoftheAdhesiveBehaviorofCollagenon(59)Gautieri,A.;Pate,M.I.;Vesentini,S.;Redaelli,A.;Buehler,M.SmoothandRandomlyRoughTiO2andAl2O3Surfaces.Comput.J.HydrationandDistanceDependenceofIntermolecularShearingMater.Sci.2013,71,172−178.betweenCollagenMoleculesinaModelMicrofibril.J.Mech.Behav.(40)Ewen,J.P.;Heyes,D.M.;Dini,D.AdvancesinBiomed.Mater.2012,45,2079−2083.NonequilibriumMolecularDynamicsSimulationsofLubricantsand(60)Gadomski,A.;Hladyszowski,J.OnTwoOpposing(Bio)-Additives.Friction2018,6,349−386.SurfacesasComprehendedinTermsofanExtensionofthe(41)Zhu,P.-z.;Hu,Y.-z.;Ma,T.-b.;Wang,H.MolecularDynamicsCoulomb-AmontonsLawofFrictionwithItsVirtualUsefulnessforStudyonFrictionDuetoPloughingandAdhesioninNanometricBiotribologyattheNanoscale.Biophysics2015,60,992−996.ScratchingProcess.Tribol.Lett.2011,41,41−46.(42)Huang,C.C.;Couch,G.S.;Pettersen,E.F.;Ferrin,T.E.;Howard,A.E.;Klein,T.E.TheObjectTechnologyFramework:AnObject-OrientedInterfacetoMolecularDataandItsApplicationtoCollagen.InPacificSymposiumonBiocomputing.PacificSymposiumonBiocomputing;1998;349−361.(43)Phillips,J.C.;Braun,R.;Wang,W.;Gumbart,J.;Tajkhorshid,E.;Villa,E.;Chipot,C.;Skeel,R.D.;Kale,L.;Schulten,K.ScalabléMolecularDynamicswithNAMD.J.Comput.Chem.2005,26,1781−1802.(44)Humphrey,W.;Dalke,A.;Schulten,K.VMD:VisualMolecularDynamics.J.Mol.Graph.1996,14,33−38.(45)Bai,S.;Murabayashi,H.;Kobayashi,Y.;Higuchi,Y.;Ozawa,N.;Adachi,K.;Martin,J.M.;Kubo,M.Tight-BindingQuantumChemicalMolecularDynamicsSimulationsoftheLowFrictionMechanismofFluorine-TerminatedDiamond-likeCarbonFilms.RSCAdv.2014,4,33739−33748.(46)Zhan,S.;Xu,H.;Duan,H.;Pan,L.;Jia,D.;Tu,J.;Liu,L.;Li,J.MolecularDynamicsSimulationofMicroscopicFrictionMechanismsofAmorphousPolyethylene.SoftMatter2019,15,8827−8839.(47)Shi,W.;Luo,X.;Zhang,Z.;Liu,Y.;Lu,W.InfluenceofExternalLoadontheFrictionalCharacteristicsofRotaryModelUsingaMolecularDynamicsApproach.Comput.Mater.Sci.2016,122,201−209.(48)Hu,C.;Bai,M.;Lv,J.;Wang,P.;Li,X.MolecularDynamicsSimulationontheFrictionPropertiesofNanofluidsConfinedbyIdealizedSurfaces.Tribol.Int.2014,78,152−159.(49)Greenfield,M.L.;Ohtani,H.FrictionandNormalForcesofModelFrictionModifierAdditivesinSimulationsofBoundaryLubrication.Mol.Phys.2019,117,3871−3883.(50)MacKerell,A.D.,Jr.;Banavali,N.;Foloppe,N.DevelopmentandCurrentStatusoftheCHARMMForceFieldforNucleicAcids.Biopolymers2000,56,257−265.(51)Mücksch,C.;Urbassek,H.M.AcceleratingSteeredMolecularDynamics:TowardSmallerVelocitiesinForcedUnfoldingSimu-lations.J.Chem.TheoryComput.2016,12,1380−1384.62https://dx.doi.org/10.1021/acs.langmuir.0c02283Langmuir2021,37,46−62
此文档下载收益归作者所有