E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown

E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown

ID:81816637

大小:4.54 MB

页数:10页

时间:2023-07-21

上传者:U-14522
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第1页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第2页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第3页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第4页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第5页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第6页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第7页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第8页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第9页
E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown_第10页
资源描述:

《E ff ect of Protein Corona on Nanoparticle − Lipid Membrane Binding The Binding Strength and Dynamics - Lee - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/LangmuirArticleEffectofProteinCoronaonNanoparticle−LipidMembraneBinding:TheBindingStrengthandDynamicsHwankyuLee*CiteThis:Langmuir2021,37,3751−3760ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:All-atommoleculardynamicssimulationsofthe10nm-sizedanionicpolystyrene(PS)particlecomplexedwithplasmaproteins(humanserumalbumin,immunoglobulingamma-1chain-C,andapolipoproteinA-I)adsorbedontolipidbilayers[asymmetricallycomposedofextracellular(zwitterionic)andcytosolic(anionic)leaflets]areperformed.Freeenergiescalculatedfromumbrellasamplingsimulationsshowthatproteinsontheparticlemoreweaklybindtothezwitterionicleafletthandobareparticles,inagreementwithexperimentsshowingthesuppressionoftheparticle−bilayerbindingbyproteincorona.Proteinsontheparticleinteractmorestronglywiththeanionicleafletthanwiththezwitterionicleafletbecauseofchargeinteractionsbetweencationicproteinresiduesandanioniclipidheadgroups,toanextentdependentonvariousplasmaproteins.Inparticular,hydrogenbondsbetweenproteinsandzwitterionicleafletsrestrictthemotionoflipidsandthusreducethelateraldynamicsofbilayers,whilethetightbindingbetweenproteinsandanionicleafletsdisruptsthehelicalstructureofproteinsanddisorderslipids,leadingtoanincreaseinthelateraldynamicsofbilayers.Thesefindingshelpexplaintheexperimentalobservationregardingthefactthatthebilayerdynamicsdecreaseswheninteractingwithproteincoronaandsuggestthattheeffectofproteincoronaonthebindingstrengthandbilayerdynamicsdependsonproteintypesandbilayercharges.DownloadedviaUNIVOFNEWMEXICOonMay16,2021at06:31:31(UTC).■INTRODUCTIONtoanionicgoldnanoparticles,whichinducestheirinteractions14Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.withintegrinreceptors.Tenzeretal.alsofoundthatcoronaNanoparticleshavebeenwidelyappliedforantitumor1−6formationpromotescellularuptakeofsilicaandpolystyrenetherapeuticsanddrug-deliveryapplications.Whendrug-15(PS)nanoparticles.Theseresultsindicatethatproteincoronaencapsulatingnanoparticlesflowthroughthebloodstream,theircanpromotecellularuptakeandinternalizationmostlyviacellsurfacesarerapidlycoatedbyplasmaproteins,leadingtothesurfacereceptors,whilemanyotherexperimentshavealsoformationofproteinlayersontheparticlesurface,calledprotein7,8showntheoppositetendency.Lesniaketal.observedlesscorona.Proteincoronaconsistsoftheinnerproteinlayeradhesionandinternalizationofsilicananoparticlesintocellstronglyboundtotheparticlesurface(hardcorona)andthe16membranesinthepresenceofproteincorona.Salvatietal.outerproteinlayerweaklyboundtotheboundaryoftheinner7,9showedthatproteincoronastericallyblocksthespecificbindingproteinlayer(softcorona).Therefore,whennanoparticlesarebetweentransferrin-conjugatednanoparticlesandtransferrintargetedtospecificcells,cellmembranesindeedrecognizeproteinlayersonparticlesurfacesratherthanbareparticlesurfaces,whichhasmotivatedmanyexperimentalandReceived:January26,2021theoreticalstudiesontheeffectofproteincoronaontheRevised:March1,2021interactionsbetweennanoparticlesandcellmembranes.10−12Published:March19,2021Experimentshaveshownthatcoronaformationinfluences13cellularuptakeandinternalizationofnanoparticles.Forinstance,Dengetal.observedunfoldingoffibrinogenbound©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.langmuir.1c002493751Langmuir2021,37,3751−3760

1Langmuirpubs.acs.org/LangmuirArticle17receptorsoncells.Wangetal.foundthereducedcytotoxicitycomplexandbilayersurfaces,favorablycomparedwithexperi-18ofgoldnanoparticlescoatedwithproteincorona,andYanetal.mentswithmodelmembranes.Inparticular,weanalyzetheshowedthatcellularinternalizationofprotein-coatedparticleseffectoftheprotein−bilayerbindingontheproteinstructuredecreasesinhumanmonocyticcellsbutincreasesindiffer-andbilayerdynamics,whicharerationalizedbyhydrogen-bond19entiatedmacrophage-likecellsviaascavengerreceptor.interactionsbetweenchargedproteinresiduesandlipidKokkinopoulouetal.andSimonetal.,respectively,observedheadgroups.WewillshowthattheseresultshelpexplaininthereducedcellularuptakeforPSparticlescoatedwithsoftdetailtheexperimentalobservationsregardingthesuppression20coronaorapolipoproteinA-I(APO)andforthosecoatedwithoftheparticle−bilayerbindingbyproteincoronaandthe21plasmaproteinswithoutimmunoglobulingamma-1(IgG).Toreducedlateraldynamicsofbilayersinteractingwithproteininterpretthesedifferenteffectsofproteincoronaonthecorona.particle−cellinteraction,nonspecificinteractionsbetweenproteincoronaandsyntheticmodelmembraneshavebeen■METHODSsystematicallystudiedthroughinvitroexperiments.Montisetal.AllsimulationsandanalyseswereperformedusingtheGROMACS-showedthatthebindingbetweenproteincorona-coatedgold41−432018.6simulationpackagewiththeoptimizedpotentialforliquidnanoparticlesandmembranesurfacesinducestheraft-likesimulations(OPLS)all-atomforcefield(FF)andtheTIP4Pwater(ordered)phase,leadingtoadecreaseinthelateraldynamicsofmodel.44,45PotentialparametersforPSweretakenfromtheOPLSmembranes.22DiSilvioetal.showedthathardcoronamore46benzeneFFdevelopedbySeveranceandJorgensen,whichweaklyinteractswithmembranesthandobareanionicPSsuccessfullyreproducestheexperimentaldensity,conformation,and47particles,whilesoftcoronasignificantlydisruptsmembranesdynamicsofPSchains.Wepreviouslyequilibratedthe10nm-sizedthandofreeplasmaproteins.23Recently,Montisetal.24andanionicPSparticlecomposedof196PSchains(20styrenemonomersWangetal.11showedthatproteincoronaweakenselectrostaticperchain)modifiedbyaddingacarboxylgrouptothechainterminal(ainteractionsbetweennanoparticlesandmembranesurfacesandnetchargeof−196perparticle)andthensimulatedthePSparticleboundtovariousplasmaproteinssuchasSA,IgG,andAPOthatwerethussuppressestheadsorptionofnanoparticlestoboth48downloadedfromtheProteinDataBank(PDBcode:1AO6,macrophageplasmaandsyntheticmodelmembranes,confirm-4950351HZH,and3K2S,respectively).TheseequilibratedPSingthesuccessfulapplicationofmodelmembranesfortheparticle−proteincomplexeswereusedasstartingstatesinthiswork.proteincorona−cellinteraction.For1-palmitoyl-2-oleoyl-glycero-3-phosphocholine(POPC),1-palmi-Tounderstandandcomplementtheseexperimentalresultsattoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine(POPE),1-palmito-nearlytheatomicscale,moleculardynamics(MD)simulationsyl-2-oleoyl-sn-glycero-3-phospho-L-serine(POPS),sphingomyelinhavebeenperformed.Mostsimulationstudieshavefocusedon(SM,d18:1/24:0),andcholesterol(CHOL),weusedpotentialthedynamicsandstructuralchangesofadsorbedproteinsandparameterscompatiblewiththeOPLSFFdevelopedbyRoǵetal.,theirinteractionswithdifferentlysized,shaped,andchargedwhichsuccessfullyreproducesexperimentalvaluesofareaperlipid,51−5425−34orderparameter,andlateraldynamicsoflipidbilayers.Roǵetal.nanoparticles.Recently,weperformedall-atomsimula-alsoconstructedamodelmembranecomposedofPOPC(9mol%),tionsoffivemajorplasmaproteinsadsorbedontocationic,POPE(18mol%),POPS(36mol%),andCHOL(37mol%)intheanionic,andhydrophobicPSparticles,showingthehigheranionicinner(cytosolic)leafletandPOPC(23mol%),SM(30molmobilityofproteinsintheouterproteinlayerthanintheinner%),andCHOL(47mol%)inthezwitterionicouter(extracellular)35proteinlayer,whichhelpstoexplainexperimentalobserva-leaflet,mimickingtheasymmetriccompositionofeukaryoticplasma55tions(i.e.,theVromaneffect)regardingcompetitiveadsorptionmembranes,whichweusedforthiswork.anddesorptionofplasmaproteinsonparticlesurfacesandtheAtemperatureof310Kandapressureof1barweremaintainedby56differenceinthebindingstrengthofproteinsininnerandouterapplyingavelocity-rescalethermostatandParrinello−Rahman57layers.36,37Besidestheseprotein−particleinteractions,theeffectbarostatinanNPxyPzTensemblewithsemi-isotropicpressurecoupling.Arealspacecutoffof1nmwasappliedforLennard-Jonesandofproteincoronaontheparticle−membraneinteractionhas3839electrostaticforceswiththeinclusionofparticlemeshEwaldbeenalsostudied.Huetal.andDingandMaperformedsummationforlong-rangeelectrostatics.58TheLINCSalgorithmwascoarse-grained(CG)simulationsofprotein-coatednano-usedtoconstraintthebondlengths.59,60Simulationswereperformedparticlesinteractingwithlipidmonolayersandbilayers,showingwithatimestepof2fsoncomputationalfacilitiessupportedbythetheeffectsofhydrophobicityandchargedensitiesofparticleNationalInstituteofSupercomputingandNetworking/KoreaInstitutesurfaces.Duanetal.’sall-atomsimulationsshowedthatcoronaofScienceandTechnologyInformationwithsupercomputingformationsuppressesinsertionandpenetrationofgrapheneresourcesincludingtechnicalsupport(KSC-2020-CRE-0095).oxidenanosheetsintolipidbilayers.40However,theeffectsofUmbrellaSamplingSimulations.Potentialsofmeanforce(PMFs)werecalculatedusingtheumbrellasamplingalgorithm,differentproteinsandmembranechargesonthebilayerwhichisacomputationalmethodtoovercomethepotentialbarrieranddynamicsandbindingstrengthhavenotyetbeensystematicallysampleallpossibleconfigurationsbyapplyingharmonicrestrainttothestudiedthroughall-atomsimulations.moleculeofinterestviaabiasedpotentialwithrespecttothereferenceAsafurthersteptowardunderstandingtheeffectsofvariousmolecule.61The10nm-sizedPSparticlecomplexedwithasingleplasmaproteinsandbilayerchargesonthebindingbetweenproteinortwoproteinswaspositionedabovethebilayerwithadistanceproteincoronaandbilayers,here,wereportall-atomMDof∼4nmbetweentheparticle−proteincomplexandbilayersurfacessimulationsofanionicPSparticlescomplexedwithasingleandthensolvatedwith∼170,000watermoleculesinaperiodicboxofsize16×16×29nm3.Thesystemswereneutralizedbyaddingplasmaproteinortwoplasmaproteins[humanserumalbumin(SA),IgG,andAPO]adsorbedontolipidbilayersasymmetri-counterionsandadditionalionsof0.15MNaClthatmimicsthephysiologicalcondition.Startingwithaninitialpositionoftheparticle−callycomposedofcytosolic(anionic)andextracellularproteincomplexwithadistanceof4nmfromthebilayersurface,the(zwitterionic)leaflets.Thebindingfreeenergiesarecalculatedparticle−proteincomplexwaspulledtowardthebilayersurfacewithafromumbrellasamplingsimulationsoftheparticlecomplexedforceconstantof1000kJmol−1nm−2,whichyieldsatotalof40samplewithproteinsmigratingtowardthezwitterionicoranionicconfigurations(calledwindows)withawindowspacingof0.1nmintheleaflet,showingtheeffectsofdifferentproteinsandbilayerdistanceof4nm(Figure1).These40windowswereequilibratedforchargesonthebindingstrengthbetweentheparticle−protein0.1nsandthenusedasstartingconfigurationsforumbrellasampling3752https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

2Langmuirpubs.acs.org/LangmuirArticlesystemsarelistedinTable1.Thelast10nstrajectorieswereusedtounbiasumbrellasamplingusingtheweightedhistogramanalysis62method.Errorswereestimatedfromthebootstrappinganalysis,calledtheBayesianbootstrappingofcompletehistograms,where63randomweightsareassignedtoallhistogramswithineachbootstrap.UnrestrainedSimulations.TheequilibratedfinalconfigurationsfromwindowshavingthelowestPMFvaluesintheabovementionedumbrellasamplingsimulationswereusedasstartingconfigurationsforunrestrainedsimulationsoftheparticle−proteincomplexinteractingwithlipidbilayers.Toobtainmoresamples,threesimulationsforeachsystemwerecarriedoutfor200ns(Table1),andthelast50nstrajectorieswereaveragedforanalyses.■RESULTSANDDISCUSSIONFree-EnergyCalculations:EffectsofDifferentProteinsandBilayerElectrostatics.ThestrengthsofthenonspecificbindingbetweenanionicPSparticle−proteincomplexesandlipidbilayers(asymmetricinnerandouterleaflets)werecomparedbycalculatingthebindingfreeenergies,aslistedinTable1.PMFsoftheparticle−proteincomplexmigratingtowardthebilayersurfacewereobtainedfromumbrellasamplingsimulationsof40windowsforeachsystem,whichwerecalculatedasafunctionofthedistancebetweencentersofmass(COMs)oftheparticle−proteincomplexandbilayerinFigure1.Potentialsofmeanforce(PMFs)forapolystyrene(PS)thebilayernormaldirectionandthenusedtocalculatefreeparticle(1stcolumn)oraPSparticle−proteincomplex(2nd∼4thcolumns)migratingtoward(a)anextracellular(zwitterionic)or(b)aenergiesofbinding(Figure1).Tounderstandtheeffectofcytosolic(anionic)leafletofthelipidbilayerasafunctionofthebilayercharges,bothcytosolic(anionic)andextracellulardistancebetweenparticle−proteincomplexandbilayercentersinthe(zwitterionic)leafletsofthelipidbilayerwereconsideredforbilayernormaldirection.Snapshotsforwindowshavingthelowestfree-energycalculations.InFigure1a,thelowestPMFsarePMFvaluesarepresentedforallsystems,whileinitialsnapshotsarefoundnearthebilayersurfaceformostsimulations,butthoseshownforsomesystems.Proteins,PSparticles,andtheiranionicPMFvaluesdiffer.Foraparticleorparticle−proteincomplexterminiare,respectively,representedasgreenribbonsandgrayandredmigratingtowardthezwitterionicleaflet,freeenergies(ΔG)aredots,whilebilayersandtheirheadgroupsarecoloredinlightanddarkmuchlowerforaparticlewithoutproteins(−25.5±1.0kJ/mol)blue,respectively.TheimageswerecreatedusingVisualMolecular67thanforparticlescomplexedwithSA,IgG,andAPODynamics.(respectively,−6.3±1.2,−2.5±3.9,and−14.5±1.6kJ/mol),showingastrongerinteractionofthebilayerwithbaresimulations.Eachwindowwassimulatedfor20ns,leadingtoatotalofparticlesurfacesthanwithproteinsontheparticlesurface.This800nsfor40windowsofeachparticle−proteinsystem.SimulatedindicatesthatproteincoronamoreweaklybindstothebilayerTable1.ListofSimulationsnumberofproteinsno.ofsimulationssimulationbilayersurfaceSAIgGAPO(orwindowsforPMF)time(ns)umbrellaZwitterionicleaflet40800sampling140800(PMF)1408001408001140800anionicleaflet408001408001408001408001140800unrestrainedZwitterionicleaflet3200simulation132001320013200113200anionicleaflet32001320013200132001132003753https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

3Langmuirpubs.acs.org/LangmuirArticlethandobareparticlesandthuscansuppressthebindingstrengthofthebindingofSAandIgGtothezwitterionicleafletbetweenPSparticlesandbilayersurfaces,inagreementwithmayberelativelyweak.Tocheckthis,windowshavingthe11,23,24experimentswithmodelmembranes.Inparticular,freelowestPMFswerefurtherequilibratedwithoutrestraintsfor200energiesarelowerforAPOthanforSAandIgG,indicatingans(Table1).ThreeunrestrainedsimulationswereperformedstrongerinteractionofthebilayerwithAPOthanwithSAandforeachsystemsothatmoresamplesareobtained.Figure3IgG,whichimpliestheeffectofdifferentproteinsontheproteinshowsthedistancebetweenPSparticle(orproteinforthecorona−bilayerbinding.particle−proteincomplex)andbilayercentersinthebilayerForaparticleorparticle−proteincomplexmigratingtowardnormaldirection.Particleswithoutproteinsbindtotheananionicleaflet,aparticlewithoutproteinsdoesnotshowazwitterionicleafletforwholesimulationtime,whiletheydonegativefree-energyvalue(Figure1b),indicatingthatannotinteractwiththeanionicleafletandsubstantiallymigrateanionicPSparticledoesnotbindtotheanionicleaflettowardbulkwater,whichoccursfordifferentorientationsofapparentlybecauseofelectrostaticrepulsion,asexpected.Freeparticles.Fortheparticle−proteincomplex,distancesarelowerenergiesaremuchlowerforparticlescomplexedwithSA,IgG,foranionicleafletsthanforzwitterionicleaflets,showingandAPO(respectively,−14.4±2.7,−12.3±0.7,and−34.3±strongerinteractionsofproteinswithanionicleafletsthanwith2.3kJ/mol)thanforabareparticle(0kJ/mol),indicatingthatzwitterionicleaflets,consistentwithfree-energycalculationsinproteincoronacanpromotethebindingbetweenparticlesandFigure1.Inparticular,SAandIgGinitiallyboundtotheanionicanionicbilayers.Inparticular,freeenergiesarelowerfortheleafletstayonthebilayersurfaceforwholesimulationtime,particle−proteincomplexesboundtoanionicleafletsthanforwhilethoseinitiallyboundtothezwitterionicleafletsometimesthoseboundtozwitterionicleaflets,implyingastrongermigratetowardthebulk-waterregion,indicatingtherelativelyinteractionofproteincoronawiththeanionicleafletthanwithweakbindingbetweenthoseproteinsandzwitterionicleaflets,thezwitterionicleaflet.Thisdependenceonthebilayerconsistentwithfree-energycalculations.TheseindicatethatelectrostaticsagreeswellwithexperimentsshowingtheAPOproteinsstronglybindtobothanionicandzwitterionicadsorptionofproteinsontotheanionicbilayerbutnotontoleaflets,whileSAandIgGstronglybindtoonlytheanionic64thezwitterionicbilayer.leaflet,againconfirmingtheeffectsofdifferentproteinsandUnrestrainedSimulations:InteractionsbetweenPar-bilayerchargesonthenonspecificbindingbetweentheparticle−ticle−ProteinComplexesandBilayers.Toquantifyproteincomplexandlipidbilayer.particle,protein,andbilayerconfigurations,massdensitiesTounderstandtheinteractionsbetweenparticle−proteinwerecalculatedforwindowshavingthelowestPMFvalues.complexes(orbareparticles)andbilayers,thenumberofFigure2showsthatanionicPSparticlesbindtothezwitterionichydrogenbondsbetweenproteins(orparticles)andlipidleafletbutdonotinteractwiththeanionicleaflet.Fortheheadgroupswascalculatedasafunctionoftime.Here,weparticle−proteincomplex,proteinsbindtothebilayersurfaceassumethatahydrogen-bondinginteractionexistswhentheandthuspreventPSparticlesfromdirectlybindingtothedonor−acceptordistanceis<0.35nmandtheangleofthe65bilayer.NotethatfreeenergiesarehigherforSAandIgGboundhydrogen-donor−acceptortripletis<30°.Notethatothertothezwitterionicleafletthanforthoseboundtotheanioniccriteriawiththedistancefrom0.3to0.4nmandtheanglefromleafletandforAPOboundtoanyleaflets,indicatingthatthe20to40°producesimilarqualitativetrends,confirmingthattheanalysisdoesnotsignificantlydependonthedistanceandanglecriteria.PSparticleswithoutproteinsformveryfewhydrogenbondswithbilayersurfaces,whileproteinsontheparticleformmanymorehydrogenbondswiththeanionicleafletthanwiththezwitterionicleaflet(Figure4),indicatingstrongerhydrogen-bondinteractionsofproteinswiththeanionicleafletthanwiththezwitterionicleaflet.Tofurtherunderstandtherolesofindividualresiduesofproteins,thenumberofhydrogenbondsbetweenlipidheadgroupsandproteinresiduessuchascationic(ArgandLys),anionic(AspandGlu),andotherresidueswascalculated.Figure5showsthatlipidheadgroupsformmorehydrogenbondswithcationicresiduesofproteinsthanwithanionicresiduesofproteins,implyingthattheprotein−bilayerbindingismodulatedbycationicresiduesofproteinsratherthanbyanionicresiduesofproteins.Anionicresiduesofproteinsformhydrogenbondswithanionicleafletsbutnotwithzwitterionicleafletspresumablybecauseproteinsmoretightlyinteractwithanionicleafletsthanwithzwitterionicleaflets,whichallowsanionicresiduestobeattractedtoanionicleafletsandformhydrogenbondswithlipidheadgroups.Thesechargeinteractionswerefurtherconfirmedbycalculatingradialdistributionfunctions(RDFs)betweenchargedaminoacidsandlipidheadgroups.InFigure6,forthezwitterionicleaflet,therearesharpRDFpeaksfortheinteractionsbetweencationicproteinresiduesandanioniclipidheadgroupsbutnotfortheinteractionsbetweenanionicproteinresiduesandcationiclipidFigure2.MassdensityprofilesofPSparticles,proteins,lipidheadgroups.RDFsofcationicproteinresiduesarehigherfortheheadgroups,andwater.anionicleafletthanforthezwitterionicleaflet.Theseresults3754https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

4Langmuirpubs.acs.org/LangmuirArticleFigure3.DistancesbetweenPSparticleandbilayercenters(1stcolumn;PSparticleswithoutproteins)andthosebetweenproteinandbilayercenters(2nd∼4thcolumns;PSparticleswithproteins)inthebilayernormaldirection,asafunctionoftime.Sincethreesimulationswereperformedforeachsystem,threedifferentcolorsareshown.Figure5.Numberofhydrogenbondsbetweenlipidheadgroupsandaminoacidsofproteinssuchascationicresidues(ArgandLys),anionicresidues(AspandGlu),andotherresidues.Figure4.Numberofhydrogenbondsbetweenproteinsandlipid(Table1andFigure7).Freeenergiesare−11.6±3.2and−24.8headgroupsofzwitterionic(left)andanionic(right)leafletsasa±0.8(×10−8)cm2s−1,respectively,forzwitterionicandanionicfunctionoftime.Sincethreesimulationswereperformedforeachleaflets,showingstrongerinteractionsofproteinswiththesystem,threedifferentcolorsareshown.anionicleafletthanwiththezwitterionicleaflet.RecallfromFigure1thatfortheparticlecomplexedwithasingleSAorIgG,indicatethattheproteincorona−bilayerbindingismodulatedfreeenergiesare−6.3to−2.5and−14.4to−12.3(×10−8)cm2bychargeinteractionsbetweencationicresiduesofproteinsands−1forzwitterionicandanionicleaflets,respectively.Theseshowanionicheadgroupsoflipids,whichisstrongerfortheanioniclowerfreeenergiesfortheparticlecomplexedwithtwoproteinsleafletthanforthezwitterionicleaflet.thanfortheparticlecomplexedwithasingleproteinapparentlyEffectofProteinDensityontheProteinCorona−becauseofthehigherextentoftheprotein−bilayerinteractionBilayerBinding.Tounderstandtheeffectofproteindensityonformedbytwoproteinsthanbyasingleprotein.Tomorethebindingstrengthbetweentheparticle−proteincomplexandpreciselycomparetheirbindingstrengths,windowshavingthethebilayersurface,umbrellasamplingsimulationswerelowestPMFswerefurtherequilibratedwithoutrestraintsfor200performedfortheparticlecomplexedwithtwoproteins(SAns.Toobtainmoresamples,threesimulationswereperformedandIgG)migratingtowardthezwitterionicoranionicleafletforeachsystem.Figure8showsthatdistancesbetweenproteins3755https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

5Langmuirpubs.acs.org/LangmuirArticleFigure8.DistancebetweeneachproteinandbilayercentersintheFigure6.Radialdistributionfunctionsbetweenanionicresidues(Aspbilayernormaldirection,asafunctionoftime.SincethreesimulationsandGlu)ofproteinsandcationicheadgroups(cholineandamine)ofwereperformedforeachsystem,threedifferentcolorsareshown.lipids(toprow)andbetweencationicresidues(ArgandLys)ofproteinsandanionicheadgroups(phosphateandcarboxylate)oflipids(bottomrow).Figure9.NumberofhydrogenbondsbetweenproteinsandlipidFigure7.PMFsforaPSparticlecomplexedwithSAandIgGmigratingheadgroupsofzwitterionic(toprow)andanionicleaflets(bottomrow)towardazwitterionic(left)oranionicleaflet(right)ofthelipidbilayerasafunctionoftime.Sincethreesimulationswereperformedforeachasafunctionofthedistancebetweentheparticle−proteincomplexandsystem,threedifferentcolorsareshown.bilayercentersinthebilayernormaldirection.SnapshotsforwindowshavingthelowestPMFvaluesarepresented.boundtothezwitterionicoranionicleafletwerecalculatedusing66andanionicleafletsareverylowanddonotfluctuatemuchfortheDSSPprogram.Figure10showsthatproteinsboundtowholesimulationtime,whereasoneofthesimulationswiththezwitterionicleafletretaintheirhelicalstructure(100thtozwitterionicleafletsshowssubstantialmigrationoftheparticle−130thresidues),whilethoseboundtotheanionicleafletshowproteincomplextowardbulkwater,similartoresultsfromthereducedhelicitypresumablybecauseproteinscomplexedsimulationsoftheparticlecomplexedwithasingleprotein.Thewiththeparticleinteractmorestronglywiththeanionicleafletnumberofhydrogenbondsbetweenproteinsandlipidthanwiththezwitterionicleaflet,whichdisruptsthehelicalheadgroupswasalsocalculated(Figure9),whichshowsthatstructureofproteinsboundtotheanionicleaflet.ThisindicatesSAandIgGformmorehydrogenbondswithanionicleafletsthattheproteinstructurecanbeinfluencedbystrongchargethanwithzwitterionicleaflets,againconfirmingstrongerinteractionsbetweenproteinsandbilayers,toanextentinteractionsofproteinswithanionicleafletsthanwithdependentonbilayercharges.zwitterionicleaflets.Inparticular,thenumbersofhydrogenExperimentally,Montisetal.observedthatthelateralbondsforasingleprotein(Figure4)andtwoproteins(Figure9)dynamicsofmodelmembranesdecreaseswheninteracting22donotsignificantlydiffer,showinglittleeffectofproteindensitywithproteincorona,althoughanaccurateaccountingofthisonthebindingbetweenproteinsandlipidbilayers.phenomenonhasnotyetbeenunderstoodattheatomicscale.EffectofProteinCoronaontheProteinStructureandToresolvethis,lateraldiffusioncoefficientsoflipidswereBilayerDynamics.Asdiscussedabove,theparticle−proteincalculatedfromtheslopesofthemean-squaredisplacementsofcomplexesbindtolipidbilayersviahydrogen-bondinteractionslipid-phosphateatomsinthexy-plane(thedirectionperpen-betweenchargedgroupsofproteinsandbilayerheadgroups,diculartothebilayernormal).Forcomparison,wefirstwhichmayinfluencetheproteinstructureandbilayerdynamics.calculatedlateraldiffusioncoefficientsofthebilayerboundtoTounderstandtheeffectoftheproteincorona-bilayerbindingPSparticleswithoutproteins,givingthevaluesof1.7to2.2ontheproteinstructure,secondarystructuresofAPOproteins(×10−8)cm2s−1forthezwitterionicleafletand2.1to2.33756https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

6Langmuirpubs.acs.org/LangmuirArticleFigure10.SecondarystructureprofilesofAPOproteins(100thto150thresidues)boundtozwitterionicleaflets(left)andanionicleaflets(right)asafunctionoftime.Sincethreesimulationswereperformedforeachsystem,threestructureprofilesarepresented.(×10−8)cm2s−1fortheanionicleaflet(Table2).NotethatPSthatanionicPSparticlesdonotdisruptthelipidbilayer.23Inparticlesdonotbindtotheanionicleaflet,andhence,theparticular,Table2showsthatlateraldiffusivitiesofthezwitterionicleafletdecreasewhenboundtoproteinspresumablyabecausehydrogenbondsbetweenproteinsandlipidheadgroupsTable2.LateralDiffusionCoefficients(DL)ofLipidsrestrictthemotionoflipids,inagreementwithMontisetal.’sbindingtothebilayerD(10−8cm2s−1)Lexperimentsshowingthattheproteincorona−bilayerbindingZwitterionicnoprotein√1.7±0.1inducestheraft-like(ordered)phaseofthebilayer,leadingtoaleaflet√2.2±0.2decreaseinthelateraldynamics.22Incontrast,lateraldiffusivities√2.0±0.3oftheanionicleafletincreasewhenboundtoproteinsSA√1.3±0.1presumablybecauseproteinsinteractmoretightlywithanionic√1.4±0.4leafletsthanwithzwitterionicleafletsandthussignificantly1.9±0.1disorderanionicleaflets.NotethatlargedifferencesbetweenIgG√0.9±0.2membranecomponents,proteinconcentrations,particlesizes,√1.0±0.3andmasstransportconditionsofthesimulationscomparedto2.0±0.3thoseinexperimentsprecludeanyquantitativecomparisonAPO√1.2±0.4betweenthetwo.Also,itwouldobviouslybeinterestingto√1.5±0.2investigatecooperativeeffectsofmultipleproteinsinsoftand√1.1±0.4hardcoronas,whichisbeyondthescopeofthispaperandhopeanionicnoprotein2.3±0.1toreportonelsewhere.Despitethis,wehaveclearlyshownthatleaflet2.1±0.4barePSparticlesformveryfewhydrogenbondswithlipid2.2±0.2headgroupsandthusdonotinfluencethelateraldynamicsofSA√2.9±0.1bilayers,whileproteinsontheparticlesurfaceformhydrogen√2.2±0.1bondswithlipidheadgroupsandthusinfluencethelateral√2.4±0.2dynamicsofbilayers.Inparticular,hydrogenbondsbetweenIgG√2.7±0.4proteinsandzwitterionicleafletsrestrictthemotionoflipidsand√2.7±0.1thusreducetheirlateraldynamics,whilethetightbinding√3.3±0.3betweenproteinsandanionicleafletsdisruptslipidsandthusAPO√2.5±0.1increasestheirlateraldynamics,showingthedependenceon√2.0±0.1bilayercharges.Thesefindingshelpexplaintheexperimental√2.9±0.3aobservationsregardingthefactthatthelateraldynamicsoflipidSincethreesimulationswereperformedforeachsystem,threevalues22bilayersdecreaseswheninteractingwithproteincoronaandarerepresented.alsosuggestthatthiseffectofproteincoronaonthebilayerdynamicsdependsonbilayercharges.diffusivityvaluesof2.1to2.3(×10−8)cm2s−1canbealsoconsideredforpurebilayerswithoutparticlesandproteins.This,■combinedwithhydrogen-bondinteractions,indicatesthatCONCLUSIONSalthoughanionicPSparticlesbindtothezwitterionicleaflet,AnionicPSparticlescomplexedwithasingleplasmaproteinortheyformveryfewhydrogenbondswithlipidheadgroupsandtwoplasmaproteins(SA,IgG,andAPO)weresimulatedwiththuscannotsignificantlyinfluencethelateraldynamicsofthethelipidbilayerasymmetricallycomposedofanionic(cytosolic)bilayer,asobservedinDiSilvioetal.’sexperimentsthatshowedandzwitterionic(extracellular)leaflets.Tocomparethebinding3757https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

7Langmuirpubs.acs.org/LangmuirArticlestrengthbetweentheparticle−proteincomplexandbilayer,free(7)Cedervall,T.;Lynch,I.;Lindman,S.;BerggÅrd,T.;Thulin,E.;energieswerecalculatedfromumbrellasamplingsimulationsofNilsson,H.;Dawson,K.A.;Linse,S.Understandingthenanoparticle-aPSparticlecomplexedwithproteinsmigratingtowardtheproteincoronausingmethodstoquantifyexchangeratesandaffinitiesbilayersurface,whichshowthatproteinsontheparticlemoreofproteinsfornanoparticles.Proc.Natl.Acad.Sci.U.S.A.2007,104,weaklybindtothezwitterionicleafletthandobareparticle2050−2055.(8)Ke,P.C.;Lin,S.;Parak,W.J.;Davis,T.P.;Caruso,F.ADecadeofsurfaces,indicatingthatproteincoronacansuppressthebindingtheProteinCorona.ACSNano2017,11,11773−11776.betweenparticlesandbilayers,inagreementwithexperiments(9)Lundqvist,M.;Stigler,J.;Elia,G.;Lynch,I.;Cedervall,T.;withmodelmembranes.Inparticular,proteinsinteractmoreDawson,K.A.Nanoparticlesizeandsurfacepropertiesdeterminethestronglywiththeanionicleafletthanwiththezwitterionicleafletproteincoronawithpossibleimplicationsforbiologicalimpacts.Proc.becauseofchargeinteractionsbetweencationicproteinresiduesNatl.Acad.Sci.U.S.A.2008,105,14265−14270.andanioniclipidheadgroups,indicatingthedependenceon(10)Lolicato,F.;Joly,L.;Martinez-Seara,H.;Fragneto,G.;Scoppola,bilayercharges,asalsoobservedinexperimentsshowingtheE.;BaldelliBombelli,F.;Vattulainen,I.;Akola,J.;Maccarini,M.TheadsorptionofproteinsontotheanionicbilayerbutnotontotheRoleofTemperatureandLipidChargeonIntake/UptakeofCationiczwitterionicbilayer.APOproteinsmorestronglybindtotheGoldNanoparticlesintoLipidBilayers.Small2019,15,1805046.bilayerthandoSAandIgG,showingtheeffectofdifferent(11)Wang,L.;Hartel,N.;Ren,K.;Graham,N.A.;Malmstadt,N.proteinsontheprotein−bilayerbinding.ThebindingstrengthsEffectofproteincoronaonnanoparticle-plasmamembraneandoftheparticlescomplexedwithasingleproteinandtwoproteinsnanoparticle-biomimeticmembraneinteractions.Environ.Sci.:Nanodonotsignificantlydiffer,showinglittleeffectofproteindensity.2020,7,963−974.(12)Mohammad-Beigi,H.;Hayashi,Y.;Zeuthen,C.M.;Eskandari,Tounderstandtheeffectoftheproteincorona−bilayerH.;Scavenius,C.;Juul-Madsen,K.;Vorup-Jensen,T.;Enghild,J.J.;bindingontheproteinstructureandbilayerdynamics,Sutherland,D.S.Mappingandidentificationofsoftcoronaproteinsatsecondarystructuresofproteinsandlateraldiffusioncoefficientsnanoparticlesandtheirimpactoncellularassociation.Nat.Commun.ofbilayerswerecalculated.Proteinsboundtothezwitterionic2020,11,4535.leafletretaintheirhelicalstructure,whilethoseboundtothe(13)Corbo,C.;Molinaro,R.;Parodi,A.;ToledanoFurman,N.E.;anionicleafletshowthereducedhelicitybecauseofthetighterSalvatore,F.;Tasciotti,E.Theimpactofnanoparticleproteincoronaoninteractionofproteinswiththeanionicleafletthanwiththecytotoxicity,immunotoxicityandtargetdrugdelivery.Nanomedicinezwitterionicleaflet,indicatingtheeffectoftheprotein−bilayer2016,11,81−100.bindingontheproteinstructure,toanextentdependenton(14)Deng,Z.J.;Liang,M.;Monteiro,M.;Toth,I.;Minchin,R.F.bilayercharges.ProteinsontheparticleformmanymoreNanoparticle-inducedunfoldingoffibrinogenpromotesMac-1hydrogenbondswithlipidheadgroupsthandobarePSparticlesreceptoractivationandinflammation.Nat.Nanotechnol.2011,6,39−andthussignificantlyinfluencethelateraldynamicsofthe44.bilayer.Inparticular,hydrogenbondsbetweenproteinsand(15)Tenzer,S.;Docter,D.;Kuharev,J.;Musyanovych,A.;Fetz,V.;zwitterionicleafletsrestrictthemotionoflipidsandthusreduceHecht,R.;Schlenk,F.;Fischer,D.;Kiouptsi,K.;Reinhardt,C.;etal.Rapidformationofplasmaproteincoronacriticallyaffectsnanoparticletheirlateralmobility,whilethetightbindingbetweenproteinspathophysiology.Nat.Nanotechnol.2013,8,772−781.andanionicleafletsdisruptslipidsandthusincreasestheirlateral(16)Lesniak,A.;Fenaroli,F.;Monopoli,M.P.;Åberg,C.;Dawson,K.dynamics,showingtheeffectofbilayercharges,whichhelpsA.;Salvati,A.Effectsofthepresenceorabsenceofaproteincoronaonexplaintheexperimentalobservationregardingthereducedsilicananoparticleuptakeandimpactoncells.ACSNano2012,6,lateraldynamicsofbilayersinteractingwithproteincorona.5845−5857.(17)Salvati,A.;Pitek,A.S.;Monopoli,M.P.;Prapainop,K.;Bombelli,■AUTHORINFORMATIONF.B.;Hristov,D.R.;Kelly,P.M.;Åberg,C.;Mahon,E.;Dawson,K.A.Transferrin-functionalizednanoparticleslosetheirtargetingcapabilitiesCorrespondingAuthorwhenabiomoleculecoronaadsorbsonthesurface.Nat.Nanotechnol.HwankyuLee−DepartmentofChemicalEngineering,2013,8,137−143.DankookUniversity,Yongin16890,SouthKorea;(18)Wang,L.;Li,J.;Pan,J.;Jiang,X.;Ji,Y.;Li,Y.;Qu,Y.;Zhao,Y.;orcid.org/0000-0002-2036-1490;Email:leeh@Wu,X.;Chen,C.Revealingthebindingstructureoftheproteincoronadankook.ac.krongoldnanorodsusingsynchrotronradiation-basedtechniques:Completecontactinformationisavailableat:Understandingthereduceddamageincellmembranes.J.Am.Chem.https://pubs.acs.org/10.1021/acs.langmuir.1c00249Soc.2013,135,17359−17368.(19)Yan,Y.;Gause,K.T.;Kamphuis,M.M.J.;Ang,C.-S.;O’Brien-Simpson,N.M.;Lenzo,J.C.;Reynolds,E.C.;Nice,E.C.;Caruso,F.NotesDifferentialrolesoftheproteincoronainthecellularuptakeofTheauthordeclaresnocompetingfinancialinterest.nanoporouspolymerparticlesbymonocyteandmacrophagecelllines.ACSNano2013,7,10960−10970.■REFERENCES(20)Kokkinopoulou,M.;Simon,J.;Landfester,K.;Mailänder,V.;(1)Segura,T.;Shea,L.D.Materialsfornon-viralgenedelivery.Annu.Lieberwirth,I.Visualizationoftheproteincorona:TowardsaRev.Mater.Res.2001,31,25−46.biomolecularunderstandingofnanoparticle-cell-interactions.Nano-(2)Ferrari,M.Cancernanotechnology:Opportunitiesandscale2017,9,8858−8870.challenges.Nat.Rev.Cancer2005,5,161−171.(21)Simon,J.;Müller,L.K.;Kokkinopoulou,M.;Lieberwirth,I.;(3)Rolland,A.P.Fromgenestogenemedicines:RecentadvancesinMorsbach,S.;Landfester,K.;Mailänder,V.Exploitingthebiomolecularnonviralgenedelivery.Crit.Rev.Ther.DrugCarrierSyst.1998,15,143−corona:Pre-coatingofnanoparticlesenablescontrolledcellular198.interactions.Nanoscale2018,10,10731−10739.(4)Davis,M.E.Non-viralgenedeliverysystems.Curr.Opin.(22)Montis,C.;Maiolo,D.;Alessandri,I.;Bergese,P.;Berti,D.Biotechnol.2002,13,128−131.Interactionofnanoparticleswithlipidmembranes:Amultiscale(5)Torchilin,V.P.Nanocarriers.Pharm.Res.2007,24,2333−2334.perspective.Nanoscale2014,6,6452−6457.(6)Nel,A.;Xia,T.;Madler,L.;Li,N.Toxicpotentialofmaterialsat(23)DiSilvio,D.;Maccarini,M.;Parker,R.;Mackie,A.;Fragneto,G.;thenanolevel.Science2006,311,622−627.BaldelliBombelli,F.Theeffectoftheproteincoronaontheinteraction3758https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

8Langmuirpubs.acs.org/LangmuirArticlebetweennanoparticlesandlipidbilayers.J.ColloidInterfaceSci.2017,(45)Kaminski,G.A.;Friesner,R.A.;Tirado-Rives,J.;Jorgensen,W.504,741−750.L.EvaluationandReparametrizationoftheOPLS-AAForceFieldfor(24)Montis,C.;Generini,V.;Boccalini,G.;Bergese,P.;Bani,D.;ProteinsviaComparisonwithAccurateQuantumChemicalCalcu-Berti,D.Modellipidbilayersmimicnon-specificinteractionsofgoldlationsonPeptides†.J.Phys.Chem.B2001,105,6474−6487.nanoparticleswithmacrophageplasmamembranes.J.ColloidInterface(46)Jorgensen,W.L.;Severance,D.L.Aromatic-AromaticSci.2018,516,284−294.Interactions:FreeEnergyProfilesfortheBenzeneDimerinWater,(25)Zhdanov,V.P.FormationofaproteincoronaaroundChloroform,andLiquidBenzene.J.Am.Chem.Soc.1990,112,4768−nanoparticles.Curr.Opin.ColloidInterfaceSci.2019,41,95−103.4774.(26)Ding,F.;Radic,S.;Chen,R.;Chen,P.;Geitner,N.K.;Brown,J.(47)Rossi,G.;Monticelli,L.;Puisto,S.R.;Vattulainen,I.;Ala-Nissila,M.;Ke,P.C.Directobservationofasinglenanoparticle-ubiquitinT.Coarse-grainingpolymerswiththeMARTINIforce-field:coronaformation.Nanoscale2013,5,9162−9169.Polystyreneasabenchmarkcase.SoftMatter2011,7,698−708.(27)Vilaseca,P.;Dawson,K.A.;Franzese,G.Understandingand(48)Sugio,S.;Kashima,A.;Mochizuki,S.;Noda,M.;Kobayashi,K.modulatingthecompetitivesurface-adsorptionofproteinsthroughCrystalstructureofhumanserumalbuminat2.5Åresolution.Proteincoarse-grainedmoleculardynamicssimulations.SoftMatter2013,9,Eng.1999,12,439−446.6978−6985.(49)Saphire,E.O.;Parren,P.W.;Pantophlet,R.;Zwick,M.B.;(28)Tavanti,F.;Pedone,A.;Menziani,M.C.CompetitiveBindingofMorris,G.M.;Rudd,P.M.;Dwek,R.A.;Stanfield,R.L.;Burton,D.R.;ProteinstoGoldNanoparticlesDisclosedbyMolecularDynamicsWilson,I.A.CrystalstructureofaneutralizinghumanIGGagainstSimulations.J.Phys.Chem.C2015,119,22172−22180.HIV-1:atemplateforvaccinedesign.Science2001,293,1155−1159.(29)Vilanova,O.;Mittag,J.J.;Kelly,P.M.;Milani,S.;Dawson,K.A.;(50)Wu,Z.;Gogonea,V.;Lee,X.;Wagner,M.A.;Li,X.-M.;Huang,Rädler,J.O.;Franzese,G.UnderstandingtheKineticsofProtein-Y.;Undurti,A.;May,R.P.;Haertlein,M.;Moulin,M.;etal.DoubleNanoparticleCoronaFormation.ACSNano2016,10,10842−10850.superhelixmodelofhighdensitylipoprotein.J.Biol.Chem.2009,284,(30)Lee,H.;Larson,R.G.AdsorptionofPlasmaProteinsonto36605−36619.PEGylatedLipidBilayers:TheEffectofPEGSizeandGraftingDensity.(51)Róg,T.;Orłowski,A.;Llorente,A.;Skotland,T.;Sylvänne,T.;Kauhanen,D.;Ekroos,K.;Sandvig,K.;Vattulainen,I.DataincludingBiomacromolecules2016,17,1757−1765.GROMACSinputfilesforatomisticmoleculardynamicssimulationsof(31)Shao,Q.;Hall,C.K.Proteinadsorptiononnanoparticles:Modelmixed,asymmetricbilayersincludingmoleculartopologies,equili-developmentusingcomputersimulation.J.Phys.:Condens.Matterbratedstructures,andforcefieldforlipidscompatiblewithOPLS-AA2016,28,414019.parameters.DatainBrief2016,7,1171−1174.(32)Shao,Q.;Hall,C.K.Allostericeffectsofgoldnanoparticleson(52)Kulig,W.;Pasenkiewicz-Gierula,M.;Róg,T.Cisandtranshumanserumalbumin.Nanoscale2017,9,380−390.unsaturatedphosphatidylcholinebilayers:Amoleculardynamics(33)Wang,X.;Wang,X.;Wang,M.;Zhang,D.;Yang,Q.;Liu,T.;Lei,simulationstudy.Chem.Phys.Lipids2016,195,12−20.R.;Zhu,S.;Zhao,Y.;Chen,C.ProbingAdsorptionBehaviorsofBSA(53)Kulig,W.;Pasenkiewicz-Gierula,M.;Róg,T.Topologies,ontoChiralSurfacesofNanoparticles.Small2018,14,1703982.structuresandparameterfilesforlipidsimulationsinGROMACSwith(34)Tavakol,M.;Montazeri,A.;Naghdabadi,R.;Hajipour,M.J.;theOPLS-aaforcefield:DPPC,POPC,DOPC,PEPC,andcholesterol.Zanganeh,S.;Caracciolo,G.;Mahmoudi,M.Disease-relatedDatainBrief2015,5,333−336.metabolitesaffectprotein-nanoparticleinteractions.Nanoscale2018,(54)Maciejewski,A.;Pasenkiewicz-Gierula,M.;Cramariuc,O.;10,7108−7115.Vattulainen,I.;Rog,T.RefinedOPLSall-atomforcefieldforsaturated(35)Lee,H.EffectsofNanoparticleElectrostaticsandProtein-phosphatidylcholinebilayersatfullhydration.J.Phys.Chem.B2014,ProteinInteractionsonCoronaFormation:Conformationand118,4571−4581.Hydrodynamics.Small2020,16,1906598.(55)Róg,T.;Orłowski,A.;Llorente,A.;Skotland,T.;Sylvänne,T.;(36)Vroman,L.EffectofadsorbedproteinsonthewettabilityofKauhanen,D.;Ekroos,K.;Sandvig,K.;Vattulainen,I.Interdigitationofhydrophilicandhydrophobicsolids.Nature1962,196,476−477.long-chainsphingomyelininducescouplingofmembraneleafletsina(37)Schöttler,S.;Landfester,K.;Mailänder,V.Controllingthecholesteroldependentmanner.Biochim.Biophys.Acta,Biomembr.2016,StealthEffectofNanocarriersthroughUnderstandingtheProtein1858,281−288.Corona.Angew.Chem.,Int.Ed.2016,55,8806−8815.(56)Bussi,G.;Donadio,D.;Parrinello,M.Canonicalsampling(38)Hu,G.;Jiao,B.;Shi,X.;Valle,R.P.;Fan,Q.;Zuo,Y.Y.throughvelocityrescaling.J.Chem.Phys.2007,126,014101.Physicochemicalpropertiesofnanoparticlesregulatetranslocation(57)Parrinello,M.;Rahman,A.Polymorphictransitionsinsingleacrosspulmonarysurfactantmonolayerandformationoflipoproteincrystals:Anewmoleculardynamicsmethod.J.Appl.Phys.1981,52,corona.ACSNano2013,7,10525−10533.7182−7190.(39)Ding,H.-m.;Ma,Y.-q.Computersimulationoftheroleofprotein(58)Essmann,U.;Perera,L.;Berkowitz,M.L.;Darden,T.;Lee,H.;coronaincellulardeliveryofnanoparticles.Biomaterials2014,35,Pedersen,L.G.ASmoothParticleMeshEwaldMethod.J.Chem.Phys.8703−8710.1995,103,8577−8593.(40)Duan,G.;Kang,S.-g.;Tian,X.;Garate,J.A.;Zhao,L.;Ge,C.;(59)Hess,B.P-LINCS:AparallellinearconstraintsolverforZhou,R.Proteincoronamitigatesthecytotoxicityofgrapheneoxidebymolecularsimulation.J.Chem.TheoryComput.2008,4,116−122.reducingitsphysicalinteractionwithcellmembrane.Nanoscale2015,7,(60)Hess,B.;Bekker,H.;Berendsen,H.J.C.;Fraaije,J.G.E.M.15214−15224.LINCS:ALinearConstraintSolverformolecularsimulations.J.(41)Hess,B.;Kutzner,C.;vanderSpoel,D.;Lindahl,E.GROMACSComput.Chem.1997,18,1463−1472.4:Algorithmsforhighlyefficient,load-balanced,andscalablemolecular(61)Torrie,G.M.;Valleau,J.P.Nonphysicalsamplingdistributionssimulation.J.Chem.TheoryComput.2008,4,435−447.inMonteCarlofree-energyestimation:Umbrellasampling.J.Comput.(42)Lindahl,E.;Hess,B.;vanderSpoel,D.GROMACS3.0:aPhys.1977,23,187−199.packageformolecularsimulationandtrajectoryanalysis.J.Mol.Model.(62)Hub,J.S.;DeGroot,B.L.;VanDerSpoel,D.g_wham-AFree2001,7,306−317.WeightedHistogramAnalysisImplementationIncludingRobustError(43)VanDerSpoel,D.;Lindahl,E.;Hess,B.;Groenhof,G.;Mark,A.andAutocorrelationEstimates.J.Chem.TheoryComput.2010,6,E.;Berendsen,H.J.C.GROMACS:Fast,flexible,andfree.J.Comput.3713−3720.Chem.2005,26,1701−1718.(63)Chernick,M.R.BootstrapMethods:AGuideforPractitionersand(44)Jorgensen,W.L.;Maxwell,D.S.;Tirado-Rives,J.DevelopmentResearchers;JohnWiley&Sons,2008;p369.andtestingoftheOPLSall-atomforcefieldonconformational(64)LeBrun,A.P.;Haigh,C.L.;Drew,S.C.;James,M.;Boland,M.energeticsandpropertiesoforganicliquids.J.Am.Chem.Soc.1996,P.;Collins,S.J.NeutronreflectometrystudiesdefineprionproteinN-118,11225−11236.terminalpeptidemembranebinding.Biophys.J.2014,107,2313−2324.3759https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

9Langmuirpubs.acs.org/LangmuirArticle(65)Jeffrey,G.A.;Saenger,W.HydrogenBondinginBiologicalStructures;Springer-Verlag:Berlin,1991.(66)Kabsch,W.;Sander,C.Dictionaryofproteinsecondarystructure:patternrecognitionofhydrogen-bondedandgeometricalfeatures.Biopolym.Pept.Sci.1983,22,2577−2637.(67)Humphrey,W.;Dalke,A.;Schulten,K.VMD:Visualmoleculardynamics.J.Mol.Graph.1996,14,33−38.3760https://doi.org/10.1021/acs.langmuir.1c00249Langmuir2021,37,3751−3760

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭