2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程

2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程

ID:83105655

大小:76.52 KB

页数:4页

时间:2022-12-29

上传者:老李
2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程_第1页
2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程_第2页
2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程_第3页
2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程_第4页
资源描述:

《2022-2023学年高二数学上学期期中期末挑战满分冲刺卷第2章+直线和圆的方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

第2章直线和圆的方程知识梳理一、直线的倾斜角、斜率与方程1.直线的倾斜角(1)定义:当直线l与x轴相交时,我们以x轴为基准,x轴正向与直线l向上的方向之间所成的角α叫做直线l的倾斜角;(2)规定:当直线l与x轴平行或重合时,规定它的倾斜角为0°;(3)范围:直线的倾斜角α的取值范围是{α|0°≤α<180°}.2.直线的斜率(1)定义:我们把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k=tan__α.(2)计算公式①经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率k=.②设P1(x1,y1),P2(x2,y2)(其中x1≠x2)是直线l上的两点,则向量=(x2-x1,y2-y1)以及与它平行的向量都是直线的方向向量.若直线l的斜率为k,它的一个方向向量的坐标为(x,y),则k=.3.直线方程的五种形式名称几何条件方程适用条件斜截式纵截距、斜率y=kx+b与x轴不垂直的直线点斜式过一点、斜率y-y0=k(x-x0)两点式过两点=与两坐标轴均不垂直的直线截距式纵、横截距+=1不过原点且与两坐标轴均不垂直的直线一般式Ax+By+C=0(A2+B2≠0)所有直线常用结论;1.直线的倾斜角α和斜率k之间的对应关系:α00<α<<α<πk0k>0不存在k<02.截距和距离的不同之处“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.二、直线的交点坐标与距离公式1.两条直线平行与垂直的判定

1(1)两条直线平行对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行.(2)两条直线垂直如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.2.直线的交点与直线的方程组成的方程组的解的关系(1)两直线的交点点P的坐标既满足直线l1的方程A1x+B1y+C1=0,也满足直线l2的方程A2x+B2y+C2=0,即点P的坐标是方程组的解,解这个方程组就可以得到这两条直线的交点坐标.(2)两直线的位置关系方程组的解一组无数组无解直线l1与l2的公共点的个数一个无数个零个直线l1与l2的位置关系相交重合平行3.距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|=.特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=.(2)点到直线的距离公式平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=.(3)两条平行线间的距离公式一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=.4.对称问题(1)点P(x0,y0)关于点A(a,b)的对称点为P′(2a-x0,2b-y0).(2)设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有可求出x′,y′.常用结论:1.“直线A1x+B1y+C1=0,A2x+B2y+C2=0平行”的充要条件是“A1B2=A2B1且A1C2≠A2C1”,“两直线垂直”的充要条件是“A1A2+B1B2”=0.2.讨论两直线的位置关系时应考虑直线的斜率是否存在.三、圆的方程1.圆的定义和圆的方程

2定义圆是平面上到定点的距离等于定长的点的集合方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:半径r=2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.常用结论:1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.四、直线与圆、圆与圆的位置关系1.直线与圆的位置关系设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点Δ<0Δ=0Δ>0几何观点d>rd=rdr1+r2d<|r1-r2||r1-2|

3图示公切线条数40213常用结论:1.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|=·.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭