《Metallization of Molybdenum Diselenide under Nonhydrostatic Compression - Liu et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleMetallizationofMolybdenumDiselenideunderNonhydrostaticCompressionBaoLiu,*LinLin,YangGao,YanzhangMa,PengyuZhou,DandanHan,andChunxiaoGao*CiteThis:J.Phys.Chem.C2021,125,5412−5416ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Itisknownthatmetallizationcangreatlyfacilitatechemicalreactionsanddramaticallychangeelectrictransportpropertiesofmaterials.Thesearchformaterialsdisplayingmetallizationatlowpressureisoneofthemosturgentchallenges.Inthispaper,pressure-inducedmetallizationofmolybdenumdiselenide(MoSe2)undernonhydrostaticcompressionhasbeenstudiedexperimentallyusingHalleffectandX-raydiffractionmeasurementscombinedwithdiamondanvilcelltechniques.InsituconductivityandHalleffectmeasurementsunderpressurerevealamonotonicdecreaseofresistivitymostlyrelatedtoasignificantincreaseofthecarrierdensitybyafactorof4.Above35.7GPa,thesampleacquiresametalliccharacterwithacharacteristicincreaseofthemobilityfrom9.9to16.2cm2V−1·s−1andsaturationofthecarrierconcentrationat5.1×1020cm−3.TheseresultsshowthatthemetallizationofpowderMoSecanbe2initiatedbyareducedpressureof35.7GPaundernonhydrostaticcompression,comparedtothatabove40GPawithasingle-crystalsampleunderhydrostaticcompression[Nat.Commun.2015,6,7312].Themechanismsofanisotropic-stress-inducedmetallizationforsuchreducedinitiationpressurehavebeendiscussed.1.INTRODUCTIONbeenperformedusingbothexperimentalandtheoretical9−11methods.Sugaietal.measuredtheinsituhigh-pressureTransition-metaldichalcogenides(TMD),MX2(M=Mo,W,Ti,Nb,Ta,etc.,X=S,Se,Te,etc.)havebeensubjectedtoRamanspectraofMoSe2andshowedthatnoclearindicationmanytheoreticalandexperimentalstudiesbecauseoftheirofstructuralphasetransitionofMoSe2wasdiscoveredupto1612DownloadedviaBUTLERUNIVonMay16,2021at10:13:17(UTC).continuouslytunableelectronicstructuresandbandgaps.TheGPa.Aksoyetal.carriedoutinsituhigh-pressureX-raystructuresofTMDsshareaquasi-laminarmodeloftwo-diffraction(XRD)measurementsofMoSe2andillustratedthat13dimensional(2D)sheetsstackedontopofoneanother.Eachnostructuralphasetransformationoccurredupto35.7GPa.sheetconsistsofthreelayers,atransition-metalatomlayerinDaveetal.examinedthevariationofelectricalresistanceofSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.themiddleandtwochalcogenatomlayerscovalentlybondedsingle-crystalMoSe2withpressureanddiscoverednoabnormal114tothetransition-metalatomsasthetopandbottomlayers.behaviorupto6.5GPa.However,previoustheoreticalThesesheetsareheldtogetherbyweakvanderWaalsforcescalculationshavepredictedthattheelectronicpropertiesofandshowexcellentmechanicalpropertiessuchashighMoSe2canbealteredinacontrollablemannerbyapplying2lubrication.Thecombinationofthecovalentbondswithinhydrostaticpressureduringthemetallizationprocessfrom28layersandvanderWaalsinteractionsbetweensheetsresultsinto40GPawhilemaintainingthe2Hstructure.15Recently,chighlyanisotropicphysicalpropertiesinTMDs.SuchsuchpredictionhasbeenverifiedexperimentallybyZhaoetcharacteristicisofgreatsignificanceinvariousapplications,al.,16whoseworkshowsthatsinglecrystalsofMoSemetalize3,42suchashydrogenevolutionreactioncatalysis,2Dmonolayerwithoutanystructuraltransitionatpressuresabove40GPa56solarcells,andultrafastlithium-ionstoragebatteries.underhydrostaticcompression.SuchdiscoverysuggeststhatFurthermore,severalmethods,includingintercalation,layerconfinement,chemicalvapordeposition,andstress,havebeenprovedvalidinthecontinuousmodificationoftheelectricReceived:January12,2021propertiesofTMDsandaffectingtheperformanceofTMDRevised:February9,2021devices.7Thus,featureshavedramaticallyextendedthePublished:February25,2021potentialapplicationsofTMDmaterialsinvariousareas.8Asapromisingcandidateforsolarcells,vastinvestigationsinoptical,structural,andelectronicresponsesofMoSe2have©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.1c002795412J.Phys.Chem.C2021,125,5412−5416
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlecontinuouslytuningTMDmaterials’electronicstructurebyutilize,insteadofavoiding,thenaturethatadiamondanvilcellmeansofpressureisfeasibleandofgreatpotentialingeneratesnonhydrostaticstresstostudythemetallizationofoptoelectronicandphotovoltaicapplications.MoSe2.OurgeometryofthesamplechamberandthenatureofMeanwhile,diversebehaviorsunderdifferentstresscon-uniaxialstresscanmakethesample’sregionreachaquasi-ditionsarecommonlyobservedinlaminarorquasi-laminarhomogeneouspressuredistributionforperformingreliableX-171819−21materials,suchas2Dgraphene,WS2,andMoS2.TheraydiffractionandHalleffectmeasurements.WS2powderundergoesisostructural2Hcto2Hametallizationundernonhydrostaticconditions,whichisnotobservedunder3.RESULTSANDDISCUSSION18hydrostaticconditions.ThetotalenergycalculationFigure1showstheisobarictemperaturedependenceofpredictedthatmonolayer2H-MoS2remainsstabletill67.9electricalresistivityinthetemperaturerangeof80−290K.19GPa,whereasinsitupressureandtemperature-dependentelectricalresistivitymeasurementsbyNayaketal.indicatedthatmultilayerMoS2undergoesanelectronictransitionfromasemiconductivetoametallicstateat19GPaunderhydrostatic20compresison.Yet,asreflectedinanotherinsitupressure-dependentresistivitymeasurementswithnopressure-trans-mittingmedium,MoS2powdersamplesfirstunderwentanisostructuralphasetransitionfroma2Hcto2Hastructure,after21whichtheybecamemetallicat28GPa.ThesestudiesallsuggestthatthebehaviorsofTMDmaterialsdependonboththestateofstressandthemorphologyofthesample.DespitetheintriguingdiversityofTMDmaterials’responsetodifferentstressconditions,whethersuchregulationappliestoMoSe2andthemechanismsbehinditremainunclear.Inthispaper,theabovementionedissueswereaddressedbycombininginsituelectricaltransportmeasurementswithinsituFigure1.TemperaturedependenceoftheresistivityofMoSe2atsynchrotronXRDmeasurementsinpowderMoSe2underrepresentativepressures.nonhydrostaticcompression.TheresultsindicatethatthemetallizationofMoSe2canbeinitiatedatareducedpressureof35.7GPaundernonhydrostaticcompressioncomparedtothatThetemperature(T)−resistivity(ρ)curvesexhibitalinearunderhydrostaticcompression(>40GPa).TheinsituHallrelationship.Atlowerpressures(<35.7GPa),theelectricaleffectmeasurements,ontheotherhand,providedadeeperresistivityofMoSedemonstratestypicalsemiconductor2interpretationfortheanisotropic-stress-inducedmetallization.characteristics,showingaconstantdecreasingtrendwithincreasingtemperature.Thedecreasingratetendstobe2.EXPERIMENTALMETHODSreduced,evenapproachingzeroataround35.7GPa.AtThecommerciallyavailableMoSe2powder(AlfaCo.,purityofpressuresabove35.7GPa,apositivetemperaturedependence99.8%)wasloadedintoanonmagneticdiamondanvilcellwithisobserved,indicatingtheinitiationofmetallizationofMoSe2.theanvilculetof400μmdiameter.AsheetofrheniumusedasComparedwiththemetallizationofasingle-crystalMoSe2agasketwaspreindentedto40μmthickness.Aholewith200reportedabove40GPaunderhydrostaticcompressionusing16μmdiameterwasdrilledatthecenteroftheindentationbyancubicBNasapressure-transmittingmedium,suchresultelectricdischargemachineandservedasthesamplechamber.showsthattheinitiationpressureofmetallizationunderApieceofarubychipofaround5μmwasusedforpressurenonhydrostaticconditionsislowerthanthatunderhydrostaticcalibration.Afour-probeMofilmmicrocircuitwithavanderconditions.PauwconfigurationwasusedforinsituelectricaltransportTogaindeeperinsightintotheanisotropic-stress-inducedmeasurementsunderpressure.Theelectrodemanufacturing,metallizationandthecarriertransportationforMoSe2,electricalinsulation,magneticcalibration,andotherrelevantnonhydrostaticcompressionHalleffectmeasurementswereexperimentaldetailshavebeenreportedinourpreviousalsoconducted.AsshowninFigure2,atambientconditions,22−24studies.Thesamplethicknessunderpressurewastheelectricalresistivity,carrierconcentration,andmobilityaremeasuredbyamicrometerwiththeaccuracyof0.5μm,30.1Ω·cm,6.57×1015cm−3,and31.57cm2V−1s−1,duringwhichthedeformationoftheanvilswasincludedasarespectively.Themagnitudeofρandninourexperimentsis2514correction.comparablewithpreviousresults.AsshowninFigure2a,theInsituhigh-pressureXRDexperimentswerecarriedoutresistivityofMoSe2decreasesconsiderablybymorethan4usingasynchrotronX-raysource(λ=0.6199Å)atthe4W2ordersofmagnitudewhenthepressurewasincreasedfromHigh-PressureStationofBeijingSynchrotronRadiationambientto34.2GPa.TheresistivityofMoSe2thenchangesitsFacility(BSRF).Thediffractiondatawerecollectedusinganpressuredependenceat∼35.7GPaanddecreasesgraduallytoMAR165CCD.Theintensityversusdiffractionanglepatterns38.8GPa.Duringdecompression,followingahysteresiscycle,weregeneratedfromXRDimagesusingFIT2Dsoftware.Fortheabnormalchangereemergesat26.5GPa,andresistivitynonhydrostaticcompressionandbetterelectrodecontact,nodoesnotgetrestoredtoitsoriginalmagnitudeatambientpressure-transmittingmediumwasusedinbothXRDconditions.measurementsandHalleffectmeasurements.AlthoughAsshowninFigure2b,c,fromanambientconditionto34.2extensiveeffortshavebeendedicatedtogeneratingtheGPa,thecarrierconcentrationincreasesbymorethan5ordershydrostaticpressuresinadiamondanvilcellbychoosingofmagnitude,whilecarriermobilitydecreasessmoothly.Thevariouspressuremediums,thisexperimentalapproachistoincreasedcarrierconcentrationcanonlybepartlycompensated5413https://dx.doi.org/10.1021/acs.jpcc.1c00279J.Phys.Chem.C2021,125,5412−5416
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.Electricalresistivity(a),carrierconcentration(b),andmobility(c)ofMoSe2asafunctionofpressureatroomtemperature.bythedecreasedcarriermobility,whichistheprimarycauseofdramaticreductionofelectricalresistivitybelow34.2GPa.Uponfurthercompression,bothcarrierconcentrationandFigure3.(a)RepresentativeXRDpatternsatvariouspressureswithmobilityshowabnormalchangesat∼35.7GPa.Carriernopressuremediumand(b)pressuredependenceoftheunitcellmobilityinvertstopositivepressuredependencewhiletheparameter.Theerrorswithinthesymbolswerereceivedfromtherefinementofcellparameters.carrierconcentrationseemstoreachsaturation.Consequently,theelectricalresistivityofMoSe2decreasessmoothlyabove35.7GPa.Duringdecompression,bothcarrierconcentrationseverepressure-inducedlinebroadeningisobservedwithandmobilityofMoSe2changeabnormallyat26.5GPaanddoanisotropic-stresselevation.Suchbehaviorisascribedtotwonotgetrestoredtotheirinitialvalueswhenquenchedtosources,anisotropic-stress-inducedcomminutionandmicro-ambientconditionsduetothehysteresiseffect.strainofsamplecrystallites.SincetheintroductionofInordertounderstandthestructuralchangeinnon-anisotropicstressusuallyresultsinthecomminutionofthehydrostaticconditions,XRDmeasurementswerecarriedouttocrystallites,suchphenomenoneffectivelyreducesthecoherentmonitorthestructuralvariationofMoSe2.Figure3ashowsthescatteringdomainsizeofthesampleandcontributestolineselectedXRDpatternsofMoSe2withnopressure-transmittingbroadening.Furthermore,thelinebroadeningisalsoenhancedmedium.Atinitialpressureof1.4GPa,thepatternofMoSe2bytheappearanceofthemicrostrainsinthecrystallitesunder26canbewellindexedintothe2Hhexagonallayeredcrystalnonhydrostaticcompression.Duringdecompression,diffrac-structure(P63/mmc),asseeninthepreviouslyreportedresulttionpeaksaregraduallyrestoredtotheiroriginalposition,13underhydrostaticpressure.Itisdiscoveredthat,withwhilethebroadenedpeakwidthismaintained,indicatingthatincreasingpressure,thediffractionlinescontinuouslyshifttothecomminutionoftheMoSe2crystallitesafteranisotropic-larger2θvaluesduetocontractionofthelattice.Nonewpeakstresstreatmentsisnotrecovered.TheXRDresultswithnoisobservedinthepressurerangeoftheexperiment.Thepressuremediumshowthatnostructuraltransformationhadpressuredependenceofthelatticeparametersispresentedinoccurredinthispressurerange,whichalsocorrespondsto16Figure3b.Thecellparametersshowasmoothcontinuoussimilarobservationswithaneonpressuremedium.There-decreasewithincreasingpressureandalsoshownoevidencefore,itisclearthatanisostructuralmetallizationprocessinforaphasetransitionundernonhydrostaticcompression.ThepowderMoSe2occurredundernonhydrostaticpressure.a-axisdecreasedby6.9%andthec-axisdecreasedby11.1%atThemetallizationcausedbyisotropicstresswasfirst2736.4GPa,whichindicatesmoretypicallyanisotropicdiscoveredbyMottandhasbeenknownastheMottcompressionbehaviorundernonhydrostaticconditions.Thetransition.InMotttransition,pressuretriggersthewavecellparametersareinagreementwiththoseofref13.Notethatfunctionsofthevalenceelectronstooverlap,whichresultsinforMoSe2underhydrostaticandnonhydrostaticcompression,theclosingofthevalence-conductionbandgapandthusthec-axisismuchmorecompressiblethanthea-axis.Themetallization.Ingeneral,forthesemiconductor,theincreaseinwidthofdiffractionlinesatnonhydrostaticcompressionispressureleadstoaphenomenonnamedstress-inducedlargerthanthatobtainedathydrostaticcompression.Moreimpuritylevels,inwhichatomsdeviatefromtheirequilibrium5414https://dx.doi.org/10.1021/acs.jpcc.1c00279J.Phys.Chem.C2021,125,5412−5416
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlepositionsandbringaboutadditionalenergylevelsinbandofstress-inducedionization.Undernonhydrostaticconditions,gaps.Athighpressure,theelectricconductionisdominatedbyanisotropicstresscanclosethebandgapmoreefficientlythancarriersfrombothoverthefullbandgapsandthestress-thatunderhydrostaticcompressionbecauseoftheanisotropic-28inducedimpuritylevelsinthebandgaps.Suchmodelofstress-drivendeformationsofBrillouinzoneboundaries.stress-inducedionizationofimpuritylevelsisusuallyutilizedtounderstandtheeffectofhydrostaticpressureontheelectrical■29AUTHORINFORMATIONpropertiesofasemiconductor.Ontheotherhand,highCorrespondingAuthorspressurealsomakesconductionandthevalencebandstoBaoLiu−CollegeofScience,NortheastElectricPowerbroadenandthebandgaptobecomenarrow(asindicatedbyUniversity,Jilin132012,China;orcid.org/0000-0001-Eg′showninFigure4).Thus,morecarrierscanbeactivated8203-7955;Phone:+86-(0)432-6480-6621;Email:liubao@neepu.edu.cnChunxiaoGao−StateKeyLaboratoryofSuperHardMaterials,JilinUniversity,Changchun130012,China;orcid.org/0000-0001-5329-2623;Phone:+86-(0)431-8516-8878-601;Email:cc060109@qq.comAuthorsLinLin−DepartmentofMechanicalEngineering,TexasTechUniversity,Lubbock,Texas79409,UnitedStatesYangGao−DepartmentofMechanicalEngineering,TexasTechUniversity,Lubbock,Texas79409,UnitedStates;CenterforHighPressureScienceandTechnologyAdvancedResearch,Shanghai201203,China;orcid.org/0000-Figure4.Sketchfortheshiftoftheenergylevelundervariouskinds0003-4530-8570ofstresses.YanzhangMa−DepartmentofMechanicalEngineering,TexasTechUniversity,Lubbock,Texas79409,UnitedStatesPengyuZhou−CollegeofScience,NortheastElectricPowerfromavalencebandtoaconductionband.Therefore,theUniversity,Jilin132012,ChinaincreaseofthecarrierconcentrationofMoSe2withincreasingDandanHan−CollegeofScience,NortheastElectricPowerpressureupto35.7GPaiscausedbybothbandgapnarrowingUniversity,Jilin132012,Chinaandstress-inducedimpuritylevelsinbandgaps.Above35.7Completecontactinformationisavailableat:GPa,thesaturatedcarrierconcentrationsuggeststhatthehttps://pubs.acs.org/10.1021/acs.jpcc.1c00279impuritylevelsarewhollyionizedandbandscompletelyoverlapathigherpressure.UnlikehydrostaticcompressionthatcompressesallthreeNotesprincipalaxesofacrystallattice,nonhydrostaticcompressionTheauthorsdeclarenocompetingfinancialinterest.tendstocompressfewerlatticeaxes.Therefore,nonhydrostaticcompressionresultsinthedeformationofBrillouinzone■ACKNOWLEDGMENTSboundariesandshiftofbandgapmid-pointE0.Asaresult,theTheauthorsthankscientistsatBeamline4W2ofBSRFforindirectbandgapshrinkstoEg*(Eg*
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(6)Liu,H.;Su,D.;Zhou,R.;Sun,B.;Wang,G.;Qiao,S.Z.Highly(26)Singh,A.K.;Andrault,D.;Bouvier,P.X-raydiffractionfromorderedmesoporousMoS2withexpandedspacingofthe(002)crystalstishoviteundernonhydrostaticcompressionto70GPa:Strengthandplaneforultrafastlithiumionstorage.Adv.EnergyMater.2012,2,elasticityacrossthetetragonal→orthorhombictransition.Phys.Earth970−975.Planet.Inter.2012,208−209,1−10.(7)Najmaei,S.;Liu,Z.;Zhou,W.;Zou,X.;Shi,G.;Lei,S.;(27)Mott,N.F.Thebasisoftheelectrontheoryofmetals,withYakobson,B.I.;Idrobo,J.-C.;Ajayan,P.M.;Lou,J.Vapourphasespecialreferencetothetransitionmetals.Proc.Phys.Soc.A1949,62,growthandgrainboundarystructureofmolybdenumdisulphide416−422.atomiclayers.Nat.Mater.2013,12,754−759.(28)Yao,M.;Wågberg,T.;Sundqvist,B.Effectofhighpressureon(8)Aruchamy,A.;Agarwal,M.MaterialsAspectsofLayeredelectricaltransportintheLi4C60fulleridepolymerfrom100to400SemiconductorsforInterfacialPhotoconversionDevices.InPhoto-K.Phys.Rev.B2010,81,No.155441.electrochemistryandPhotovoltaicsofLayeredSemiconductors;Springer,(29)Grant,A.;Griffiths,T.;Pitt,G.;Yoffe,A.Theelectrical1992;pp319−347.propertiesandthemagnitudeoftheindirectgapinthesemi-(9)Reshak,A.H.;Auluck,S.Bandstructureandopticalresponseofconductingtransitionmetaldichalcogenidelayercrystals.J.Phys.C:SolidStatePhys.1975,8,No.L17.2H−MoX2compounds(X=S,Se,andTe).Phys.Rev.B2005,71,No.155114.(10)Galvan,D.H.ElectronicstructurecalculationsforMoSe2usingextendedhuckeltight-bindingmethod.Mod.Phys.Lett.B2004,18,35−44.(11)Coehoorn,R.;Haas,C.;DeGroot,R.ElectronicstructureofMoSe2,MoS2,andWSe2.II.Thenatureoftheopticalbandgaps.Phys.Rev.B1987,35,6203.(12)Sugai,S.;Ueda,T.HighpressureRamanspectroscopyinthelayered2H-MoS2,2H-MoSe2,2H-MoTe2.Phys.Rev.B1982,26,6554−6558.(13)Aksoy,R.;Selvi,E.;Ma,Y.X-raydiffractionstudyofmolybdenumdiselenideto35.9GPa.J.Phys.Chem.Solids2008,69,2138−2140.(14)Dave,M.;Vaidya,R.;Patel,S.;Jani,A.HighpressureeffectonMoS2andMoSe2singlecrystalsgrownbyCVTmethod.Bull.Mater.Sci.2004,27,213−216.(15)Rifliková,M.;Martoňák,R.;Tosatti,E.Pressure-inducedgapclosingandmetallizationofMoSe2andMoTe2.Phys.Rev.B2014,90,No.035108.(16)Zhao,Z.;Zhang,H.;Yuan,H.;Wang,S.;Lin,Y.;Zeng,Q.;Xu,G.;Liu,Z.;Solanki,G.K.;Patel,K.D.;etal.Pressureinducedmetallizationwithabsenceofstructuraltransitioninlayeredmolybdenumdiselenide.Nat.Commun.2015,6,No.7312.(17)Bissett,M.A.;Tsuji,M.;Ago,H.Strainengineeringthepropertiesofgrapheneandothertwo-dimensionalcrystals.Phys.Chem.Chem.Phys.2014,16,11124−11138.(18)Duwal,S.;Yoo,C.-S.Shear-inducedisostructuralphasetransitionandmetallizationoflayeredtungstendisulfideundernonhydrostaticcompression.J.Phys.Chem.C2016,120,5101−5107.(19)Nayak,A.P.;Pandey,T.;Voiry,D.;Liu,J.;Moran,S.T.;Sharma,A.;Tan,C.;Chen,C.-H.;Li,L.-J.;Chhowalla,M.;etal.Pressure-DependentOpticalandVibrationalPropertiesofMonolayerMolybdenumDisulfide.NanoLett.2015,15,346−353.(20)Nayak,A.P.;Bhattacharyya,S.;Zhu,J.;Liu,J.;Wu,X.;Pandey,T.;Jin,C.;Singh,A.K.;Akinwande,D.;Lin,J.-F.Pressure-inducedsemiconductingtometallictransitioninmultilayeredmolybdenumdisulphide.Nat.Commun.2014,5,No.3731.(21)Chi,Z.;Zhao,X.;Zhang,H.;Goncharov,A.F.;Lobanov,S.S.;Kagayama,T.;Sakata,M.;Chen,X.Pressure-inducedmetallizationofmolybdenumdisulfide.Phys.Rev.Lett.2014,113,No.036802.(22)Gao,C.;Han,Y.;Ma,Y.;White,A.;Liu,H.;Luo,J.;Li,M.;He,C.;Hao,A.;Huang,X.;etal.Accuratemeasurementsofhighpressureresistivityinadiamondanvilcell.Rev.Sci.Instrum.2005,76,No.083912.(23)Li,M.;Gao,C.;Ma,Y.;Li,Y.;Li,X.;Li,H.;Liu,J.;Hao,A.;He,C.;Huang,X.Newdiamondanvilcellsystemforinsituresistancemeasurementunderextremeconditions.Rev.Sci.Instrum.2006,77,No.123902.(24)Hu,T.;Cui,X.;Gao,Y.;Han,Y.;Liu,C.;Liu,B.;Liu,H.;Ma,Y.;Gao,C.InsituHalleffectmeasurementondiamondanvilcellunderhighpressure.Rev.Sci.Instrum.2010,81,No.115101.(25)Li,M.;Gao,C.;Ma,Y.;Wang,D.;Li,Y.;Liu,J.Insituelectricalconductivitymeasurementofhigh-pressuremolten(Mg0.875,Fe0.125)2SiO4.Appl.Phys.Lett.2007,90,No.113507.5416https://dx.doi.org/10.1021/acs.jpcc.1c00279J.Phys.Chem.C2021,125,5412−5416
此文档下载收益归作者所有