《Direct Observation of the C S 2 Channel in CS 2 Photodissociation - Li et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterDirectObservationoftheC+S2ChannelinCS2PhotodissociationZhenxingLi,MinZhao,TingXie,ZijieLuo,YaoChang,GongkuiCheng,JiayueYang,ZhichaoChen,WeiqingZhang,GuorongWu,XinganWang,*KaijunYuan,*andXuemingYangCiteThis:J.Phys.Chem.Lett.2021,12,844−849ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Carbondisulfide(CS2)isatypicaltriatomicmolecule.Itsphoto-dissociationprocesshasgenerallybeenassumedtoproceedtoCSandSprimaryproductsviasinglebondfission.However,recenttheoreticalcalculationssuggestedthatanexitchanneltoproduceC+S2shouldalsobeenergeticallyaccessible.Here,wereportthedirectexperimentalevidencefortheC+S2channelinCS2photodissociationbyusingthevelocitymapionimagingtechniquewithtwo-photonUVandone-photonvacuumUV(VUV)excitations.ThedetectionoftheC(3P)productsillustratesthatthegroundstateandtheelectronicallyexcitedstatesofS2coproductsareformedwithinhighlyexcitedvibrationalstates.Theveryweakanisotropicdistributionsindicaterelativelyslowdissociationprocesses.ThepossibledissociationmechanisminvolvesmolecularisomerizationofCStolinear-CSSfromtheexcited1B(21Σ+)stateviavibronic22couplingwiththe1Πstatefollowedbyanavoidedcrossingwiththegroundstatesurface.OurresultsimplythattheS2moleculesobservedincometsmightbeprimarilyformedinCS2photodissociation.17−19hotodissociationdynamicsoftriatomicmoleculeshasvariesremarkably,from0.25to6.ForphotolysisPbeenafieldofintensiveresearch,asthesesystemsarewavelengthstowardthevacuumultraviolet(VUV)region,theproductionoftripletCS(a3Π)becomesmoreimportant,amenabletodetailedexperimentalandtheoreticalstudiesthatcouldsignificantlydeepenourunderstandingofphoto-andbetween140and125nm,theCSfragmentsarealmost20chemistry.Overthepastfewdecades,thetextbookmechanismcompletelyproducedinthetripletstate.ThepossibleforatriatomicmoleculeABCmainlyinvolvessinglebonddissociationchannelsconcerningCSandSfragmentsarefissiontoproduceA+BCorAB+C.1However,recentsummarizedinFigure1.investigationsonCO(linear−OCO)2andOCS3photolysisRecently,theCSandS2radicalshavebeenbothobservedby221haverevealedthecentral-atomeliminationprocesses,i.e.,C+radioandultraviolet(UV)spectroscopiesinseveralcomets.O2andC+SOchannels,whichcouldtakeplaceviaeitheraTheoreticalcalculationssuggestedthattheUVirradiationofDownloadedviaUNIVOFCONNECTICUTonMay16,2021at07:41:14(UTC).conventionalnonadiabaticdissociationpathwayoraroamingCS2mayinducephotochemicalprocessesresponsibleforthe22pathway.Intriguingquestionswouldbedoesthiscentral-atomproductionofCSandS2radicalsincomets.Ontheothereliminationchannelexistinthephotodissociationprocessesofhand,Jimenz-Escobarandco-workersproposedH2S2,formedSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.othertriatomicmoleculesanddoesthisprocessinvolveaftertheX-rayradiationofH2Sices,astheparentforS223anotherdetailedmicroscopicmechanism?productionincomets.Infact,whetherS2is“aparentoraAsatypicaltriatomicmolecule,CSpossesses16valencedaughter”isstillunknown;regardless,S2isveryshort-lived.2Althoughonespeculatesthatthecentral-atomeliminationelectronswithalinearcentrosymmetricstructure(SCS).channelmaywidelyexistinthephotodissociationprocessesofBecauseofitsimportanceinastrophysicalmedia,theearth’striatomicmolecules,suchaprocesshasnotbeenobservedinatmosphere,biologicalmedia,andorganicchemistry,thephotodissociationbehaviorofitslow-lyingsingletandtriplettriatomicmoleculesystemsotherthanCO2andOCSyet.4−8TherehavebeenseveralreportsofCS2photochemistrythatelectronicstateshavebeenextensivelystudiedtheoretically9−13havetriedtoillustratetheformationmechanismofS2andexperimentally.TheabsorptionspectrumofCS22414fragments.Inonestudy,deSorgoetal.observedtransientshowsmanyabsorptionbandsbetween100and400nm,andthephotochemistryofCS2inthisregionhasbeenasubjectofactiveinterestformorethanhalfacentury,duetoitsReceived:November13,2020strongdependenceonthewavelengthofphotolysis.Accepted:January7,2021Absorptionofonephotonaround193nmleadstothePublished:January11,2021productionofsingletCS(X1Σ+)fragmentsandsulfuratomsinthetripletorsingletstate(3Por1D).15,16ThebranchingratiofortheS(3P)andS(1D)channelsreportedfromthesestudies©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c03386844J.Phys.Chem.Lett.2021,12,844−849
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterpropagatingalongthecenteraxisoftheionopticsassemblymountedinthesamedifferentiallypumpedreactionchamber.Themolecularbeamwasintersectedat90°anglesbythephotolysisandprobelaserbeamsbetweenthesecondandthethirdplatesoftheionopticsassembly.ThephotolysisphotonswereprovidedbyanNd:YAGlaserpumpeddyelaser(fortwo-photonexcitationbetween300and320nm)andthevacuum33,34ultravioletfreeelectronlaser(theVUVFEL,forone-photonexcitationbetween128and144nm).TheC(3P)photoproductswereprobedby1+1′(VUV+visible)excitationwiththeλVUV=127.99nm(resonantexcitationofC(3P)).35TheVUVdetectionlaserlightwasgeneratedbythe1four-wavedifferencefrequencymixingthefrequencydoubledoutputfromonedyelaser(atλ=212.557nm)andthefundamentaloutputofaseconddyelaser(atλ=626.57nm)inaKrgascell.Thevisiblelaserbeam(atλ=700nm)generatedbyathirddyelaserwasusedasthe1′light.TheC+Figure1.PlausiblemechanismsofthephotodissociationofCS2.(i)ionswerethenacceleratedthroughtheremainingionopticsTwo-photonexcitationwiththewavelengthsbetween300and320anda740mmlongfield-freeregionbeforeimpactinga70mmnm.(ii)One-photonexcitationbyusingtheVUVFELlaserinthediametermicrochannelplate(MCP)detectorcoupledwithawavelengthregionof128−144nm.(iii)Thewavepacketexploresthe11+phosphorscreen(P43).Acharge-coupleddevice(CCD)flatpotentialenergysurfaceofB2(2Σ),andspin−orbitorvibroniccamerawasusedtorecordthetransientimagesonthecouplingsmayoccur,leadingtoS+CSorconversiontolinearCSS.phosphorscreen,usinga15nsgatepulsevoltageinordertoacquiretime-slicedimages.absorptionspectraofS2(v=0),butnoSatomswereobservedAsmentionedabove,wefirstemployedtwo-photonbythatmethod.TheyconcludedthatS2mustbeformedbyexcitationofCS2inthewavelengthregionof300−320nmthereactionCS2*+CS2→2CS+S2.Inotherstudies,andVUV+visiblelightbeamstoionizetheCatomproducts.2526Figure2presentstheionimagesofC(3P)productsattwo-MakarovandBazhin,andmorerecentlyMakarov,1suggestedtheformationofSwouldprobablyoccurinsmallphotonphotolysiswavelengthsof300.0,303.8,307.3,312.9,2clustersofCSandprovidedamodelforanewstyleofclusterand320.0nm.Thedoubleheadedredarrowsinthefigures2photochemistry:(CS2)2*→(CS)2+S2.Morerecently,Sapersstandforthepolarizationdirectionofphotolysislasers.Theetal.27proposedthatCSexcitedintheregionof300nmwell-resolvedconcentricringstructureswereobservedinthe2absorbsasecondphotonwithahighcrosssectiontoahigh-ionimages,whichcorrespondtoindividualvibrationalstatesoflyingstateataround8.05eV,wherethemoleculeS2coproducts.ItisnotedthatthesestructurescannotarisepredissociatestoCS+S;theSatomsthusthenreactwithfromtheotherCeliminationprocess,liketheC+S+SCS2togiveS2andCS.Todate,however,thedirectevidenceofchannel,becauseoftheinsufficientphotolysisphotonenergy.theS2productfromCS2photolysishasnotyetbeenobserved.ToavoidtheCfragmentfromthesecondarydissociation(theRecenttheoreticalcalculation28byTrabelsietal.suggestedprimaryCSfragmentmayfurtherdissociatebyabsorbingonethatanexitchanneltoproduceC+S2fromCS2photolysisUVorVUVphoton),anoff-axisbiconvexLiFlenswasusedtowithsufficientphotonenergyispossible.Thecomputationdispersethe212.557nmlightfromthedirectionof127.99nm35showedthatforbentstructures,theinitiallyexcited1B(21Σ+)beam,andthe127.99nmlightremainsdefocused.2stateofCSiscrossedbythebentcomponentofthe1Πstate;InthisCS2photodissociationexperiment,thephoto-23theCSSisomercanbeformedaftervibroniccouplingwith1Πexcitationenergy(hv)isdistributedbetweentheC(PJ)andS(X3Σ−)productkineticenergy(E)andinternalenergybyanavoidedcrossingwiththegroundelectronicstate.As2gK(E),whereE[C(3P)]isduetoexcitationofthespin−orbitshowninFigure5binref28,theformationofthecyc-CS2intintJstate;andthecorrelatedS(X3Σ−)photoproductscanbefromthelinearCSStakesplaceontheflatpotentialenergy2gsurfaceofthegroundstateofthelinearCSS.TheCSSbothrotationallyandvibrationallyexcited.TheVMIimagesmoleculehasenoughinternalenergytoconverttocyc-CS2orcanbeusedtodeterminetherecoilvelocitydistributionofthe3viafragmentation,producingC(3P)+S(X3Σ−).DespiteC(PJ)photofragmentsfromtheradiioftheresolvedring2gthesetheoreticalresults,toourknowledge,therehasbeennostructures.Thevelocitiesareconvertedtoatotalkineticenergyrelease(TKER)spectrumoftheC(3P)+S(X3Σ−)channelexperimentalverificationoftheC+S2channelinCS2J2gphotodissociation.Here,wereportthestudyofthisinterestingbyusingeq1basedontheconservationoflinearmomentumC+S2channelinCS2photodissociationbyusingtwo-photonandenergyandone-photonexcitations.DirectexperimentalevidenceofC33−−3333−11+hv=+[D0iEntC(P)JJ]+[Σ]EintS(X2gK)+[EC(P)+S(X2Σ]g)(P)+S2(XΣg/aΔg/bΣg)productswasobservedusing3(1)thevelocitymapionimaging(VMI)measurementsofC(P)atoms.ThephotoconversionofCS2tocyc-CS2andlinear-CSSHere,D0isthethermochemicalthresholdfortheformationofisbelievedtoplayanimportantroleinthisdissociationtheC(3P)+S(X3Σ−)productsfromCSdissociation,J2g2process.whichwasdeterminedtobe7.86eV(157.7nm)byFournier36TheapparatusfortheVMIexperimentshasbeendescribedetal.However,ourexperimentshaverecordedtheimageof29−323previously.ApulsedsupersonicbeamwasgeneratedbyC(P0)atthelongestwavelengthof∼333nm(FigureS1),expandingamixtureof0.3%CSandHeintothesourcesuggestingthethermochemicalthresholdofC(3P)+S202chamberwhereitwasskimmedbeforeenteringand(X3Σ−)channelshouldbelowerthan7.45eV(166.5nm).g845https://dx.doi.org/10.1021/acs.jpclett.0c03386J.Phys.Chem.Lett.2021,12,844−849
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterspin−orbitinteractionplaysaminorroleinthisdissociationchannel.Inordertoabstractmoreinformation,aqualitativesimulationoftheenergydistributionwascarriedout.TheresultsofthesimulationrevealthattherotationaldistributionsofS(X3Σ−)arenarrowandappeartopeakatalowJatallof2gtheinvestigatedwavelengths.ThiscoldproductrotationaltemperatureindicatesthatthebendingmotionoftheCS2moleculeisnotextensivelyexcitedalongthedissociationcoordinate,andthedissociatingCS2moleculeprobablypossessesanearlineargeometry.Figure3showstherelativeFigure3.RelativepopulationofdifferentvibrationalstatesoftheS2(X3Σ−)andS(a1Δ)coproductsfromtheC(3P)detectionatfiveg2g1photolysiswavelengths.vibrationalstatepopulationsofSproducts.TheS(X3Σ−)22gproductsareobviouslyhighlyvibrationallyexcited,withthelargestpopulationatv=2,4,5,7,and5forthephotolysiswavelengths300.0,303.8,307.3,312.9,and320.0nm,respectively.ItisnotedthattheS(X3Σ−)productsshow2gquitesimilardistributionsatallfivephotolysiswavelengths,suggestingasimilardissociationmechanisminthiswavelengthregion.ThepopulationoftheS(a1Δ)productsissmallanda2glittlearbitrary,sincethereisnoclearsigntoseparatetheTKERspectraofS(X3Σ−)andS(a1Δ)products.2g2gTheproductspatialangulardistributionwasalsoobtainedbythefollowingequationf()θσβ={+1PP(cos)θβ+(cos)θ}(2)2244whereσistheproducttranslationalenergydistribution,β2andβ4areanisotropyparametersthatdependonthephoto-dissociationratesfortheformationofspecificphotofragmentsandthegeometryoftheexcitedmolecule,P2andP4arethesecond-andfourth-orderLegendrepolynomials,andθistheFigure2.Ionimagesandtranslationalenergydistributions(arb.scatteringangle.Theoverallangularparameterswereunits)ofC(3P)productsfromtwo-photondissociationofCSat12determinedbyfittingtheangulardistributionsinFigure2.wavelengthsof(a)300.0,(b)303.8,(c)307.3,(d)312.9,and(e)3320.0nm.TheringsshownintheimagescorrespondtotheTable1liststheoverallanisotropyparametersofC(P1)vibrationalstateoftheS(X3Σ−)andS(a1Δ)coproducts.productsatthefivephotolysiswavelengths.Theaveragedβ22g2gvaluesovertheproducttranslationalenergydistributionare∼0.2forC(3P)productsatthefivewavelengths,whiletheFigure2displaystheTKERdistributionsoftheC(3P)11channelbyintegratingoverallproductangles.Theinternal3−Table1.AnisotropyParameterValuesDerivedfromenergydistributionsofS2(XΣg)coproductscanbeobtained3fromtheTKERspectrabyusingthelawofenergySimulationsofDifferentialCrossSectionsforC(P1)PhotoproductsbyUsingEq2conservation.TheenergycombsrepresentingthevibrationalquantumnumbersofS(X3Σ−)productsarelabeledinFigure2g2.SincethefirstelectronicallyexcitedstateofS(a1Δ)iswavelengths/nmβ2β42gestimatedtobe∼4700cm−1higherthanthegroundstate,37300.00.23−0.01thevibrationalprogressionsofS(a1Δ)productsarealso303.80.23−0.022gdisplayedinFigure2.WehavealsoacquiredC(3P)imagesfor307.30.20−0.02Jthethreespin−orbitstates(J=0,1,and2)(FigureS2),which312.90.18−0.04showalmostthesamedistributions.Thisimpliesthatthe320.00.12−0.02846https://dx.doi.org/10.1021/acs.jpclett.0c03386J.Phys.Chem.Lett.2021,12,844−849
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.Ionimagesandtranslationalenergydistributions(arb.units)ofC(3P)productsfromone-photondissociationofCSbyusingtheVUV12FELlaseratwavelengthsof(a)127.9,(b)134.2,(c)137.3,(d)140.1,(e)141.0,and(f)143.9nm.TheringsshownintheimagescorrespondtothevibrationalstateoftheS(X3Σ−),S(a1Δ),andS(b1Σ+)coproducts.2g2g2gaveragedβ4valuesareclosetozero.AccordingtopreviouspartiallyresolvedstructuresintheTKERspectraatthesestudies,theabsorptionbandintheregionof290−330nmofwavelengthsillustratethatbothchannelsarehighlyvibration-CShasbeenassignedasaV-band,correspondingtothe1Ballyexcited.Nosuchfeatureshavebeenfoundforthehigher22(1Δ)←X1Σ+transition.38,39This1BstatehasaquitelongchannelsC(3P)+S(b1Σ+).Thereareseveralpronouncedug212glifetime;thus,theangulardistributionisdeterminedsolelybyintheTKERthatareinverygoodagreementwiththeenergythesecondtransitionfromtheintermediate1BstatetotheleveloftheS(b)state.Therefore,theS(b)channelshould222finalstate,andthecoherencebetweenthefirstandthesecondplayaroleinthedissociation.However,sincetheS2(b)state40photonswouldnotbeimportant.Fromourpreviouspaper,hassomeenergyoverlapwithotherstates,andtheTKERtwo-photonexcitationofCS2around300nmshouldbeviathespectradropsdramaticallyatverylowkineticenergy,thesequentialtransition1B(21Σ+)←1B(1Δ)←X1Σ+,asintensitiesofS(b1Σ+)productsshouldbeverysmall.22u2gdisplayedinFigure1.TheparalleltransitioninthesecondstepTheangulardistributionshavebeenextractedfromthehasledtoaβvalueofaround0.6−0.7fortheCS(X1Σ+)imagesbyintegratingtheintensityoverthecorresponding2g353productsbetween300and320nm.Incontrast,theβ2valueradicalrange.TheC(P1)ionimagesrevealslightlyismuchsmaller(∼0.2)fortheS(X3Σ−)coproducts,perpendiculardistributionswithaverageparametersaround2gsuggestingamuchslowerdissociationprocessforthelatter.−0.1to−0.3atthesixphotolysiswavelengths.TherelativelyThisisrational,becausethemoleculeneedstoundergothesmallvaluesshowveryweakanisotropicdistribution,isomerizationfromtheCS2tolinear-CSSandthendissociates.indicatingthatthisdissociationprocessshouldbequiteslow,Toexploremoreaboutthedissociationmechanism,wehavewhichissimilartothatobservedinthetwo-photonUV28alsoperformedone-photonexcitationofCS2byusingtheexcitationexperiments.TheoreticalcalculationspointedoutVUVFELlaserinthewavelengthregionof128−144nm.thatthe1B(21Σ+)stateofCSshouldplayamajorroleinthe22Figure4displaystheC(3P)ionimagesfollowingCSisomerizationandphotodissociationprocessesoccurringat12photodissociationat127.9,134.2,137.3,140.1,141.0,andhighenergies.Absorptionofonephotonwithhv≥7.08eV143.9nm,respectively.Eachimagewasobtainedbyshouldefficientlypopulatethe1B(21Σ+)state,sincethe2accumulatingtheC+signalsover30000lasershotswithtransitiondipolemomentoftheSCS1B(21Σ+)←X1Σ+is2backgroundsubtraction.Theredverticalarrowindicatestherelativelylarge.Inthiswork,CS2moleculesareexcitedeitherpolarizationdirectionoftheVUVFELlaser.TheTKERdirectlyto1B(21Σ+)stateortoevenhigherelectronicstates2distributionsderivedfromtheseimagesarealsoshowninfollowinginternalconversiontothe1B(21Σ+)stateby2Figure4.TheTKERspectracontainsmultipledissociationabsorbingtwophotons(300−320nm)oronephoton(128−channels,namely,C(3P)+S(X3Σ−),C(3P)+S(a1Δ),144nm).AsshowninFigure3andFigure5ainref28,the12g12gandC(3P)+S(b1Σ+).TheenergyresolutionoftheTKERpotentialof1B(21Σ+)stateisshallowandflatalongtheCS12g2spectraisnothighenoughtoclearlyseparatethedissociationdistanceandbendingangle,andamoleculeonthissurfacewillpathwaystothedifferentelectronicstatesofS2.Themaybeundergolarge-amplitudemotions,whichleadtoseveralduetomultipleproductchannelsortherelativelyhigherprocessesincompetition.Forinstance,the1B(21Σ+)state2rotationalexcitationoftheSproducts.Nevertheless,fromtheiscrossedbythe11Πstateforthelinearconfiguration(with2sharpstepsatthehighenergyonsetoftheS(a1Δ)products,energiesof∼7eV).AfterUVabsorption,theS(1D)+CS2gitisrationaltopointoutthattheproductionofC(3P)+S(X1Σ+)productscanbeformedthroughvibroniccoupling12g(a1Δ)competeswiththatofC(3P)+S(X3Σ−).Thewith11Π.Inaddition,S(3P)+CS(X1Σ+)productscanoccurg12gg847https://dx.doi.org/10.1021/acs.jpclett.0c03386J.Phys.Chem.Lett.2021,12,844−849
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterafterspin−orbitcouplingwiththe3Πelectronicstates.ForZijieLuo−StateKeyLaboratoryofMolecularReactionbentstructures,the1B(21Σ+)stateiscrossedbythebentDynamics,DalianInstituteofChemicalPhysics,Chinese2componentofthe1A(11Π)state.TheCSSisomercanbeAcademyofSciences,Dalian116023,China1formedaftervibroniccouplingwith1A(11Π)statefollowedYaoChang−StateKeyLaboratoryofMolecularReaction1byanavoidedcrossingwiththegroundstateat115°.Finally,Dynamics,DalianInstituteofChemicalPhysics,ChineseCSScoulddissociatetoC(3P)+S(X3Σ−)throughabarrierAcademyofSciences,Dalian116023,China12gwithoutcouplingtoanotherelectronicstate.WhilehigherGongkuiCheng−StateKeyLaboratoryofMolecularelectronicstatesshouldbeinvolvedintheS(a1Δ/b1Σ+)ReactionDynamics,DalianInstituteofChemicalPhysics,2ggchannels,thedetailedpotentialenergysurfaceinformationChineseAcademyofSciences,Dalian116023,Chinaawaitsfurthertheoreticalinvestigations.OurexperimentshereJiayueYang−StateKeyLaboratoryofMolecularReactionclearlyidentifythattheS2moleculecanbeadaughterofCS2Dynamics,DalianInstituteofChemicalPhysics,Chineseinastrophysicalmedia.TheformationofS2fromtheCS2byAcademyofSciences,Dalian116023,Chinatwo-photonUVorone-photonVUVphotolysisisfollowedbyZhichaoChen−StateKeyLaboratoryofMolecularReactiondissociationmechanismsproposedbytheoreticalcalcula-Dynamics,DalianInstituteofChemicalPhysics,Chinesetions.28AcademyofSciences,Dalian116023,ChinaInsummary,wehaveinvestigatedthecentral-atomWeiqingZhang−StateKeyLaboratoryofMolecularReactioneliminationchannelofC+S2intheCS2photodissociationDynamics,DalianInstituteofChemicalPhysics,Chineseprocess.Inboththetwo-photonandone-photonexcitationAcademyofSciences,Dalian116023,Chinaexperiments,wehaveclearlyobservedtheS2productsinitsGuorongWu−StateKeyLaboratoryofMolecularReactiongroundstate(X3Σ−)andelectronicallyexcitedstates(a1Δ,Dynamics,DalianInstituteofChemicalPhysics,Chineseggb1Σ+).ThedissociationmechanisminvolvesphotoconversionAcademyofSciences,Dalian116023,China;orcid.org/gfromCS2tolinear-CSSandthendissociatesafterexcitationto0000-0002-0212-183Xthe1B(21Σ+)orhigherelectronicstates.GiventhesimilarityXuemingYang−StateKeyLaboratoryofMolecularReaction2ofOCS,CO2,andCS2,webelievethatthecentral-atomDynamics,DalianInstituteofChemicalPhysics,ChineseeliminationchannelismoregeneralthanexpectedintheAcademyofSciences,Dalian116023,China;DepartmentofphotodissociationoftriatomicmoleculesandshouldbeaddedChemistry,CollegeofScience,SouthernUniversityofScienceintothetextbookdissociationdynamicsmodels.andTechnology,Shenzhen518055,China;orcid.org/0000-0001-6684-9187■Completecontactinformationisavailableat:ASSOCIATEDCONTENThttps://pubs.acs.org/10.1021/acs.jpclett.0c03386*sıSupportingInformationTheSupportingInformationisavailablefreeofchargeatNoteshttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03386.Theauthorsdeclarenocompetingfinancialinterest.Additionalexperimentalresultsfortwo-photondissoci-ation(PDF)■ACKNOWLEDGMENTSTheexperimentalworkissupportedbytheChemicalDynamicsResearchCenter(GrantNo.21688102),the■AUTHORINFORMATIONNationalNaturalScienceFoundationofChina(NSFCNos.CorrespondingAuthors21873099,21922306,21590802),theKeyTechnologyTeamXinganWang−HefeiNationalLaboratoryforPhysicaloftheChineseAcademyofSciences(GrantNo.SciencesattheMicroscaleandDepartmentofChemicalGJJSTD20190002),theinternationalpartnershipprogramofPhysics,UniversityofScienceandTechnologyofChina,Hefei,ChineseAcademyofSciences(No.121421KYSB20170012),Anhui230026,P.R.China;orcid.org/0000-0002-1206-andtheStrategicPriorityResearchProgramoftheChinese7021;Email:xawang@ustc.edu.cnAcademyofSciences(GrantNo.XDB17000000).WethankKaijunYuan−StateKeyLaboratoryofMolecularReactionWentaoChenforhelpfuldiscussions.WealsothankthestaffDynamics,DalianInstituteofChemicalPhysics,ChineseteamoftheDalianCoherentLightSource(DCLS)forAcademyofSciences,Dalian116023,China;orcid.org/technicalsupport.0000-0002-5108-8984;Email:kjyuan@dicp.ac.cn■REFERENCESAuthors(1)Okabe,H.PhotochemistryofSmallMolecules;Wiley:NewYork,ZhenxingLi−HefeiNationalLaboratoryforPhysicalSciences1978.attheMicroscaleandDepartmentofChemicalPhysics,(2)Lu,Z.;Chang,Y.C.;Yin,Q.Z.;Ng,C.Y.;Jackson,W.M.UniversityofScienceandTechnologyofChina,Hefei,AnhuiEvidenceforDirectMolecularOxygenProductioninCO2Photo-230026,P.R.Chinadissociation.Science2014,346(6205),61−64.MinZhao−HefeiNationalLaboratoryforPhysicalSciences(3)Chen,W.T.;Zhang,L.;Yuan,D.F.;Chang,Y.;Yu,S.R.;Wang,attheMicroscaleandDepartmentofChemicalPhysics,S.W.;Wang,T.;Jiang,B.;Yuan,K.J.;Yang,X.M.;etal.ObservationoftheCarbonEliminationChannelinVacuumUltravioletPhoto-UniversityofScienceandTechnologyofChina,Hefei,AnhuidissociationofOCS.J.Phys.Chem.Lett.2019,10(17),4783−4787.230026,P.R.China(4)Tseng,D.C.;Poshusta,R.D.Ab-InitioPotentialEnergyCurvesTingXie−HefeiNationalLaboratoryforPhysicalSciencesatforLow-LyingStatesofCarbon-Disulfide.J.Chem.Phys.1994,100theMicroscaleandDepartmentofChemicalPhysics,(10),7481−7486.UniversityofScienceandTechnologyofChina,Hefei,Anhui(5)Zhang,Q.G.;Vaccaro,P.H.Ab-InitioStudiesofElectronically230026,P.R.ChinaExcitedCarbon-Disulfide.J.Phys.Chem.1995,99(6),1799−1813.848https://dx.doi.org/10.1021/acs.jpclett.0c03386J.Phys.Chem.Lett.2021,12,844−849
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(6)Brown,S.T.;VanHuis,T.J.;Hoffman,B.C.;Schaefer,H.F.(26)Makarov,V.I.ThePressure-DependenceofFluorescenceExcitedElectronicStatesofCarbonDisulphide.Mol.Phys.1999,96IntensityandPhotolysisRateoftheVaporsofCarbonBisulfide,(4),693−704.Nitrogen-Dioxide,andSulfur-Dioxide.Int.J.Chem.Kinet.1990,22(7)Wiberg,K.B.;Wang,Y.;deOliveira,A.E.;Perera,S.A.;(1),1−19.Vaccaro,P.H.ComparisonofCIS-andEOM-CCSD-Calculated(27)Sapers,S.P.;Donaldson,D.J.Two-PhotonPhotochemistryofAdiabaticExcited-StateStructures.ChangesinChargeDensityonCS2-FormationofS2(V-LESS-THAN-OR-EQUAL-TO-2)andgoingtoAdiabaticExcitedStates.J.Phys.Chem.A2005,109(3),CS(V-LESS-THAN-OR-EQUAL-TO-10)at308nm.J.Phys.Chem.466−477.1990,94(26),8918−8921.(8)Pradhan,E.;Carreon-Macedo,J.L.;Cuervo,J.E.;Schroder,M.;(28)Trabelsi,T.;Al-Mogren,M.M.;Hochlaf,M.;Francisco,J.S.Brown,A.AbInitioPotentialEnergyandDipoleMomentSurfacesforMechanisticStudyofthePhotoexcitation,Photoconversion,andCS2:DeterminationofMolecularVibrationalEnergies.J.Phys.Chem.PhotodissociationofCS2.J.Chem.Phys.2018,149(6),064304.A2013,117(32),6925−6931.(29)Zhou,J.M.;Zhao,Y.R.;Hansen,C.S.;Yang,J.Y.;Chang,Y.;(9)Brasen,G.;Demtroder,W.VibrationalLevelsandStatisticalYu,Y.;Cheng,G.K.;Chen,Z.C.;He,Z.G.;Yu,S.R.UltravioletAnalysisoftheX1Σ+GroundStateofCS.J.Chem.Phys.1999,110PhotolysisofH2SandItsImplicationsforSHRadicalProductioning2(24),11841−11849.theInterstellarMedium.Nat.Commun.2020,11(1),1547.(10)Lo,W.J.;Wu,Y.J.;Lee,Y.P.UltravioletAbsorptionSpectrum(30)Chang,Y.;He,Z.G.;Luo,Z.J.;Zhou,J.M.;Zhang,Z.G.;ofCyclicS2OinSolidAr.J.Phys.Chem.A2003,107(36),6944−Chen,Z.C.;Yang,J.Y.;Yu,Y.;Li,Q.M.;Che,L.;etal.Application6947.ofLaserDispersionMethodinApparatusCombiningHAtom(11)Sunanda,K.;Shastri,A.;Das,A.K.;Sekhar,B.R.ElectronicRydbergTaggingTime-of-FlightTechniquewithVacuumUltravioletStatesofCarbonDisulphideinthe5.5−11.8eVRegionbyVUVFreeElectronLaser(dagger).Chin.J.Chem.Phys.2020,33(2),139−PhotoAbsorptionSpectroscopy.J.Quant.Spectrosc.Radiat.Transfer144.2015,151,76−87.(31)Chang,Y.;Yang,J.Y.;Chen,Z.C.;Zhang,Z.G.;Yu,Y.;Li,Q.(12)Yang,J.;Beck,J.;Uiterwaal,C.J.;Centurion,M.ImagingofM.;He,Z.G.;Zhang,W.Q.;Wu,G.R.;Ingle,R.A.;etal.UltravioletAlignmentandStructuralChangesofCarbonDisulfideMoleculesPhotochemistryofEthane:ImplicationsfortheAtmosphericusingUltrafastElectronDiffraction.Nat.Commun.2015,6,8172.ChemistryoftheGasGiants.Chem.Sci.2020,11(19),5089−5097.(13)Dayan,E.;Dervil,E.;Loisel,J.;Pinan-Lucarre,J.P.;Tarjus,G.(32)Chang,Y.;Yu,S.R.;Li,Q.M.;Yu,Y.;Wang,H.L.;Su,S.;Interaction-InducedVibrationalSpectraofLiquidCS2inVariousChen,Z.C.;Che,L.;Wang,X.G.;Zhang,W.Q.TunableVUVSolvents.ConcentrationEffect.Chem.Phys.1988,119(1),107−123.PhotochemistryUsingVacuumUltravioletFreeElectronLaser(14)McGlynn,S.P.;Rabalais,J.W.;McDonald,J.R.;Scherr,V.M.CombinedwithH-atomRydbergTaggingTime-of-FlightSpectros-ElectronicSpectoscopyofIsoelectronicMolecules.II.Linearcopy.Rev.Sci.Instrum.2018,89(6),063113.TriatomicGroupingsContainingSixteenValenceElectrons.Chem.(33)Chang,Y.;Yu,Y.;Wang,H.L.;Hu,X.X.;Li,Q.M.;Yang,J.Rev.1971,71(1),73−108.Y.;Su,S.;He,Z.G.;Chen,Z.C.;Che,L.HydroxylSuperRotors(15)Waller,I.M.;Hepburn,J.W.PhotofragmentSpectroscopyoffromVacuumUltravioletPhotodissociationofWater.Nat.Commun.CS2at193nm-DirectResolutionofSingletandTripletChannels.J.2019,10,1250.Chem.Phys.1987,87(6),3261−3268.(34)Wang,H.L.;Yu,Y.;Chang,Y.;Su,S.;Yu,S.R.;Li,Q.M.;Tao,(16)Kitsopoulos,T.N.;Gebhardt,C.R.;Rakitzis,T.P.K.;Ding,H.L.;Yang,J.Y.;Wang,G.L.PhotodissociationDynamicsPhotodissociationStudyofCS2at193nmUsingSliceImaging.J.ofH2Oat111.5nmbyaVacuumUltravioletFreeElectronLaser.J.Chem.Phys.2001,115(21),9727−9732.Chem.Phys.2018,148(12),124301.(17)Tzeng,W.B.;Yin,H.M.;Leung,W.Y.;Luo,J.Y.;(35)Li,Z.X.;Zhao,M.;Xie,T.;Chang,Y.;Luo,Z.J.;Chen,Z.C.;Wang,X.G.;Yuan,K.J.;Yang,X.M.VelocityMapImagingStudiesNourbakhsh,S.;Flesch,G.D.;Ng,C.Y.A193nmLaserPhotofragmentationTime-of-FlightMass-SpectrometricStudyofofthePhotodissociationofCS2byTwo-PhotonExcitationataround303−315nm.Mol.Phys.2020,e1813911.CS2andCS2Clusters.J.Chem.Phys.1988,88(3),1658−1669.(36)Fournier,J.;Lalo,C.;Deson,J.;Vermeil,C.Thermolumi-(18)McGivern,W.S.;Sorkhabi,O.;Rizvi,A.H.;Suits,A.G.;North,S.W.PhotofragmentTranslationalSpectroscopywithState-SelectivenescenceFollowingVUVPhotolysisofOCSandCS2inanArgonMatrix.J.Chem.Phys.1977,66(6),2656−2659.“UniversalDetection“:TheUltravioletPhotodissociationofCS2.J.11Chem.Phys.2000,112(12),5301−5307.(37)Carleer,M.;Colin,R.fΔu-aΔgBandSystemofS2inAbsorption.J.Phys.B:At.Mol.Phys.1970,3(12),1715−1723.(19)Dornhofer,G.;Hack,W.;Langel,W.ElectronicExcitationand(38)Jungen,C.;Malm,D.N.;Merer,A.J.Analysisofa1Δ-1Σ+QuenchingofCSFormedintheArFLaserPhotolysisofCS2.J.Phys.ugTransitionofCS2innearUltraviolet.Can.J.Phys.1973,51(14),Chem.1984,88(14),3060−3069.1471−1490.(20)Black,G.;Sharpless,R.L.;Slanger,T.G.ProductionofCS3(39)Kasahara,H.;Mikami,N.;Ito,M.;Iwata,S.;Suzuki,I.(AΠ)inPhotodissociationofCS2below1600Å.J.Chem.Phys.11+1977,66(5),2113−2117.ExcitationandDispersedFluorescence-SpectraoftheB2(V)-Σg(X)TransitionofJet-CooledCS2.Chem.Phys.1984,86(1−2),173−188.(21)Jackson,W.M.;Scodinu,A.;Xu,D.D.;Cochran,A.L.Using(40)Kawasaki,M.;Sato,H.;Kikuchi,T.;Fukuroda,A.;Kobayashi,theUltravioletandVisibleSpectrumofComet122P/DEVICOtoS.;Arikawa,T.Angular-DistributionsofPhotofragmentsGeneratedinIdentifytheParentMoleculeCS2.Astrophys.J.2004,607(2),L139−theTwo-PhotonDissociationofNitrogen-DioxideandCarbon-L141.Disulfide.J.Chem.Phys.1987,86(8),4425−4430.(22)Bockelee-Morvan,D.;Crovisier,J.;Mumma,M.J.;Weaver,H.́A.TheCompositionofCometaryVolatiles.CometsII2004,391−■423.NOTEADDEDAFTERASAPPUBLICATION(23)Jiḿenez-Escobar,A.;MuñozCaro,G.M.;Ciaravella,A.;DuetoanACSproductionerror,thispaperwasoriginallyCecchi-Pestellini,C.;Candia,R.;Micela,G.SoftX-RayIrradiationofpublishedASAPwithincorrectpagination.ThiswascorrectedH2SIceandthePresenceofS2inComets.Astrophys.J.,Lett.2012,intheversionpublishedonJanuary14,2021.751(2),L40.(24)DeSorgo,M.;Yarwood,A.J.;Strausz,O.P.;Gunning,H.E.PhotolysisofCarbonDisulfideandCarbonDisulfide-OxygenMixtures.Can.J.Chem.1965,43(6),1886−1891.(25)Makarov,V.I.;Bazhin,N.M.TheInfluenceofaMagnetic-FieldontheFluorescenceandPhotolysisRateofCarbon-DisulfideVapor.Chem.Phys.Lett.1986,124(6),499−503.849https://dx.doi.org/10.1021/acs.jpclett.0c03386J.Phys.Chem.Lett.2021,12,844−849
此文档下载收益归作者所有