《Anisotropic Janus SiP 2 Monolayer as a Photocatalyst for Water Splitting - Yu et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterAnisotropicJanusSiP2MonolayerasaPhotocatalystforWaterSplitting∥∥TongYu,CongWang,XuYan,GuochunYang,*andUdoSchwingenschlögl*CiteThis:J.Phys.Chem.Lett.2021,12,2464−2470ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Thedesignofmaterialsmeetingtherigorousrequirementsofphotocatalyticwatersplittingisstillachallenge.AnisotropicJanus2Dmaterialsexhibitgreatpotentialduetooutstandinglyhighphotocatalyticefficiency.Unfortunately,thesematerialsarescarce.Bymeansofabinitioswarm-intelligencesearchcalculations,weidentifyaSiP2monolayerwithJanusstructure(i.e.,out-of-planeasymmetry).Thematerialturnsouttobesemiconductingwithanindirectbandgapof2.39eVenclosingtheredoxpotentialsofwater.Notably,theoxygenandhydrogenevolutionhalfreactionscanhappensimultaneouslyattheSiandPatoms,respectively,drivenmerelybytheradiation-inducedelectronsandholes.Thecarriermobilityisfoundtobeanisotropicandhigh,upto10−4cm2V−1s−1,facilitatingfasttransportofthephotogeneratedcarriers.TheSiP2monolayershowsremarkablystrongopticalabsorptioninthevisible-to-ultravioletrangeofthesolarspectrum,ensuringefficientutilizationofthesolarenergy.hemoderneconomyandsocietydemandhugeamountsalsoisabletoimprovetheutilizationofphotogeneratedTofenergy,whilethereservesoftraditionalfossilenergy17carriers.TheprototypicalexampleisMoSSe(obtainedbyarelimited,andtheutilizationoffossilenergypollutesthereplacementoftheSatomsononesideof2DMoS2withSeenvironment.Environmentallyfriendly,low-cost,andsustain-atoms),whichexhibitslargepiezoelectricity.18SeveralJanusableenergysourcesthusareinurgentdemand.Photocatalyticmaterials,particularlyMX(M=Al,Ga,In;X=S,Se,Te)623decompositionofwaterintohydrogen(H2)andoxygen(O2)andBP,19achieveanoutstandingphotocatalyticefficiency,26isthebasisofoneofthemostpromisingenergysources,asiteveninexcessoftheconventionaltheoreticallimitof18%.directlyutilizesclean,renewable,andcost-freesolarenergy.TheyprovidearoutetorealizingtheoxygenevolutionreactionWhileseveralbreakthroughshaveemergedsincethepioneer-1(OER)andhydrogenevolutionreaction(HER)simulta-ingworkofFujishimaandHonda,theavailabilityofnontoxic20neouslyatdifferentatomicspecies.andhighlyefficientcatalystsremainsakeyissueforlarge-scale2,3Silicene,the2Dcounterpartofwidelyusedsilicon,hasaDownloadedvia222.254.62.142onMay14,2021at07:05:49(UTC).applications.buckledhoneycombstructure,realizesamixtureofsp2andsp32Dmaterialsdemonstrateuniqueadvantagesovertraditionalbulkmaterialsforachievinghighlyefficientphotocatalysis.4Inhybridization,andisnonmetallic,insharpcontractto21particular,largesurface-to-volumeratiosgiverisetoabundantgraphene.Phosphorenecombinesadirectbandgapwith5anisotropicmechanical,electronic(sp3hybridization),andactivesites.FastcarriertransportandshortdistancesSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.6opticalpropertiesoriginatingfromitsstructuralasymme-maximizetheutilizationofthephotogeneratedcarriers,and22,23dependenceoftheelectronpropertiesonquantitiessuchasthetry.Three-coordinationofSiorPatomsalsofacilitatesthethickness,surfacefunctionalization,andexternalstrainmakesitformationofa2Dstructure.Indeed,severalstable2DSixPy7possibletoenhancetheutilizationofthesunlight.materialshavebeenreportedwithnovelstructuresandAvarietyof2Dphotocatalyticmaterialsalreadyhavebeenextraordinaryproperties.24−26Whileg-CNshareswith348studiedexperimentallyand/ortheoretically,suchasg-C3N4,phosphorenetheexcellentcatalyticperformance,theweak91011BN,phosphorene,transition-metaldichalcogenides,absorptionofsunlightlimitsapplications.27However,though12,1314PdSeO3,andcovalentorganicframeworks,someCandSiaswellasNandPbelongtothesamegroupofthedemonstratingexcellentefficiency.Still,photocatalystsforperiodictable,theyaredistinguishedintermsoftheirwatersplittingarerare.Thus,besidesimprovingtheperform-15anceoftheknown2Dmaterials,itiscrucialtosearchfornewcandidates,notonlytoelevatethematerialpropertiesbutReceived:December30,2020alsotobroadentheknowledgeof2Dmaterialsingeneral.16Accepted:February26,2021Janusmaterials,aspecialkindof2Dmaterials,drawPublished:March4,2021attentionduetotheirout-of-planeasymmetry,inducinganisotropy,electricpolarization,piezoelectricity,andmagnet-ismsuitablefornovelelectronicdevices.TheJanusstructure©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c038412464J.Phys.Chem.Lett.2021,12,2464−2470
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter41electronegativityandwillhybridizedifferently;i.e.,anew2DalternatingSiandPatoms,likesilicene;andzigzagPchains,4243SixPymaterialstillcanrealizestrongopticalabsorption.like3Dboronmonophosphideand2DAsP.SincethePAscurrentlyabinitiostructuralpredictionplaysanatomsinthezigzagchainsareconnectedtoSiatoms,eachSi/28−30importantroleinthediscoveryofnewmaterials,wePatominthehoneycombstructureisthree-coordinatedwithconductinthepresentworkaglobalsearchforthelowest-P/Siatoms,andeachPatominthezigzagchainsconnectstoenergystructureof2DSiP(x=1−4andy=1−4).WeoneSiandtwoPatoms,givingrisetoansp3hybridizationandxyidentifystablesemiconductingSiP2andSiP3monolayers.satisfyingthechemicaloctetruleforboththeSiandPatoms.Interestingly,theSiP2monolayerrealizesananisotropicJanusNoticethatoneofthePhybridorbitalsholdsanelectronlonestructure.Itcombineshighcarriermobilitieswithstrongpair(Figure1c)andthattheuniquestructuralarrangementopticalabsorption.TheSiandPatomsgiverisetoactivesitesexposesthePatoms.Thebondingisstronglycovalent(FigurefortheOERandHER,respectively,anditturnsoutthatthe1c,d),andtheSi−P(2.28Å)andP−P(2.27Å)bondlengths44photogeneratedelectronsandholescantriggerthetwohalfarecomparabletothoseinSiP(2.33Å)andphosphorene45reactionstooccursimultaneously.Thisopensgreatpotential(2.24Å).oftheSiP2monolayerinphotocatalyticwatersplitting.Beingaprerequisiteforapplication,weexploretheWeapplythecrystalstructureanalysisbyparticleswarmdynamical,mechanical,thermal,andairstabilitiesoftheSiP231,32optimization(CALYPSO)code;seedetailsinthemonolayer.TheobtainedphononspectrumisindicativeofSupportingInformation.Structureoptimizationsandelec-dynamicalstability(absenceofimaginaryfrequenciesthrough-tronicpropertycalculationsareperformedintheframeworkofouttheBrillouinzone;Figure2a).Thehighestfrequency(529densityfunctionaltheory,usingtheViennaabinitiosimulation33,3435packageandprojectoraugmented-wavepseudopotentialswithSi3s23p2andP3s23p3valencestates.Theenergycutoffoftheplanewavesissetto400eV,theenergyconvergenceto10−6eV,andtheatomicforceconvergenceto10−3eVÅ−1.Tocreate2Dmodels,avacuumslabof∼20Åthicknessis36adopted.ThePerdew−Burke−Ernzerhoffunctionalisusedforthestructureoptimizations,andtodetermineaccuratebandgapsandopticalproperties,weadopttheHeyd−Scuseria−37Ernzerhof(HSE06)hybridfunctional.Deformationpotential38theoryisemployedtopredictthecarriermobilities;phonondispersionsarederivedbythesupercellapproachofthe39Phonopycode,andmoleculardynamics(MD)simulationsareexecutedtoevaluatethethermalstability.TheMDsimulationslast10pswithatimestepof1fsandarebasedon40anNVTensemblewithNose−́Hoovertemperaturecontrol.20O2moleculesareevenlydistributedonthetwosidesoftheSiP2monolayerwiththedistancetothemonolayerbetween2and3Å.Byextensivestructuralsearch,twohithertounknown2DmaterialswithstoichiometriesofSiP2andSiP3areidentified(structuralinformationinTablesS1andS2).OtherFigure2.(a)PhononspectrumoftheSiP2monolayer.PhonondensitiesofstatescanbefoundinFigureS1.(b)Totalenergyandstoichiometriesareincompatiblewithdynamicalstability.snapshotsoftheSiP2monolayerwith20O2moleculesbeforeandSiP2exhibitsout-of-planeasymmetry(Janusstructure;Figureaftera10psMDsimulationat300K.Polardiagramsof(c)E(θ)and1a,b),consistingofabuckledhoneycombstructurewith(d)v(θ).cm−1)iscomparabletoresultsforSiP(540cm−1)26and3phosphorene(470cm−1),46demonstratingtheformationofstrongcovalentbonds.MDsimulationscarriedoutfor10psat300and1000Kshowneitherbondbreakingnorsignificantstructuraldistortions,verifyingthermalstability(FigureS2).AsPcaneasilyreactwiththeoxygen(O2)moleculesintheair,47likephosphorene,andconsideringthatthePatomsoftheSiP2monolayerarestronglyexposedtotheenvironment,weemployMDsimulationsat300KtocheckthestabilityofaSiP2monolayerwith20O2moleculesina6×3×1supercell.After10ps,theSiP2monolayerremainsintact,andtheO2moleculestendtoseparatefromthemonolayerwithoutdissociatingintooxygenatoms(Figure2b).SimilarresultsareobtainedforCO2,H2,N2,andH2Omolecules(FigureS3).Basedonthecalculatedlinearelasticconstants,theSiP2monolayerisalsomechanicallystable(SupportingInforma-tion).Young’smodulusE(θ)characterizesamaterial’sFigure1.(a)Sideand(b)topviewsoftheSiP2monolayer.Electronflexibility/stiffness,andPoisson’sratiov(θ)describesitslocalizationfunctioninthe(c)topand(d)bottomsurfaces.mechanicalresponsetoanexternalload.WefindthatE(θ)2465https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettervariesfrom77to105Nm−1(Figure2c),thusbeingsmallershowsstrongSi−Phybridization(Figure3b),pointingtothanthatofgraphene(342Nm−1)48butcomparabletothatofcovalentbonds,whichisconsistentwithourabovestructuralphosphorene(24−102Nm−1).49Thein-planeflexibilityoftheanalysis.BoththeVBMandCBMmainlyoriginatefromtheSiSiP2monolayerconsequentlyismoderate.Wefurtherfindthat3pandP3porbitals.ThechargedensitiesattheVBM(Figurev(θ)variesfrom0.16to0.24(Figure2d).Thecohesiveenergy3c)andCBM(Figure3d)indicatethattheπelectroncloudis53isusefultoevaluatetheprospectsforexperimentalsynthesisofbrokenupbytheelectronlonepairs,asobservedinPC6.apredicted2Dmaterial.WefindfortheSiP2monolayeraWhile,ingeneral,everysemiconductorwithabandgapvalueof3.98eVatom−1.Whilethisvalueislowerthanthosebetween1.23and3eVisapotentialphotocatalystforwaterreportedforgraphene(7.91eVatom−1)50and2DMoS(5.15splitting,theenergeticpositionsoftheVBMandCBMmust2eVatom−1),51itsurpassesthecohesiveenergiesofalreadybesignificantlylowerandhigherthanthewateroxidationexistingsilicene(3.91eVatom−1),19germanene(3.24eVpotential(−5.67eV)andhydrogenreductionpotential(−4.44atom−1),19andphosphorene(3.30eVatom−1),52indicatingeV)atpH=0,respectively.Thelargertheenergydifferences,feasibilityofexperimentalsynthesisoftheSiPmonolayer.thebetteritisforthewatersplitting.TheVBM(−6.37eV)2WenextexploretheelectronicpropertiesoftheSiPandCBM(−3.98eV)oftheSiP2monolayersatisfythe2thermodynamicrequirements(Figure3e).Thisremainsvalidmonolayerbystudyingtheelectronbandstructureandpartialunderupto±5%strain.Whilestretchingsupportsthedensitiesofstates(PDOS).AttheHSE06leveloftheory,wehydrogenreduction,compressionsupportsthewateroxidation.findasemiconductingcharacterwithanindirectbandgapofAnexcellentphotocatalystmustbeabletoharvestsunlight2.39eV(Figure3a).Moreover,theconductionbandminimumefficiently,particularlyvisibleandultravioletlight.To(CBM)islocatedattheM(0.5,0.5,0.0)point,andthedeterminetheopticalabsorptioncoefficientoftheSiP2valencebandmaximum(VBM)islocatedbetweentheMandmonolayerinareliablemanner,theHSE06leveloftheoryisY(0.0,0.5,0.0)points.Notably,thedirectbandgapof2.51eVemployed.Between300and500nm,weobtainvaluesofuptoattheYpointcomesclosetotheindirectbandgap.ThePDOS5−110cm(Figure3f),whichismuchhigherthanthatreported54forg-C3N4.Theobtainedanisotropyoftheopticaladsorptionisnotverylarge.Moreinterestingly,wefindared-shiftofthespectrumunderstrain,supportingtheutilizationofvisiblelight,whileboththeanisotropyandhighopticalabsorptioncoefficientaremaintained.Hence,theSiP2monolayercaneffectivelyharvestsunlight,facilitatingutilizationasaphotocatalystforwatersplitting.Rapidtransportofthephotogeneratedelectronsandholestotheactivesitesiscrucialforahighlyefficientcatalysis.Highcarriermobilityisalsoaprerequisiteofmanyhigh-perform-20anceelectronicdevices.WeaimtoemploydeformationpotentialtheorytoestimatethecarriermobilityoftheSiP2monolayer.Toverifythatthisapproachissuitable,wepredicttheholemobilityofphosphoreneas2533cm2V−1s−1,whichisconsistentwiththereportedvalueof2200cm2V−1s−1.55ThemainparameterscalculatedfortheSiP2monolayeraregiveninTable1.Thehighcarriermobilitiesoutperform2DTable1.SiP2Monolayer:DeformationPotentialConstant(EDP),In-PlaneStiffness(C),EffectiveMass(m*),CarrierMobility(μ),andRelaxationTime(τ)alongtheaandbDirectionsat300KEDPm*carriertype(eV)C(Jm−2)(m)μ(cm2V−1s−1)τ(ps)0electron(a)12.51101.280.13212.360.02hole(a)0.31101.280.783.20×10415.60electron(b)0.2376.991.903.27×10438.80hole(b)0.5876.991.035.27×1033.39MoS(200cm2V−1s−1)56andg-CN(334cm2V−1s−1),57234showingstronganisotropywiththelowerelectronandholemobilityalongtheaandbdirection,respectively.ThisisFigure3.(a)ElectronicbandstructureoftheSiP2monolayer.Themainlyduetothedirection-dependences(Table1)ofthehorizontaldashedlineistheVBM.(b)PDOSofthePandSiatomsindeformationpotentialconstant(larger/smallerintheathantheSi3P3honeycombsandthePatomsinthezigzagPchains.Topthebdirectionforelectrons/holes)andtheeffectivemassandsideviewsofthechargedensitiesatthe(c)VBMand(d)CBM.(e)EnergeticpositionsoftheVBMandCBMunderbiaxialstrain.(smallerintheathanthebdirectionforbothelectronsandThedashedlinesmarktheredoxpotentialsofwateratpH=0.(f)holes)resultingfromthestructuralanisotropyinherenttotheOpticalabsorptioncoefficientoftheSiP2monolayercomparedtog-SiP2monolayer.Importantly,theSiP2monolayerisabletoC3N4.ensurefasttransportofthephotogeneratedelectronsandholes2466https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettertoeffectivelyparticipateintheredoxreaction.WhileitisaWefinallyturntothediscoveredSiP3monolayer,whichchallengetoachieve2DmaterialsthatcombinealargebandshowsamonoclinicstructurewithspacegroupC2/mandfour58−60gapwithhighcarriermobilityanddirectionalcontrol,theformulaunitsperunitcell(Figure5a−c).TheSiandPatomsSiP2monolayermeetstheserequirementsandthusisalsoapromisingcandidateforhigh-performanceelectronicdevices.TostudywhetherthephotogeneratedelectronsandholescanprovideenoughdrivingforcetotriggertheOERandHER,wefocusonneutralconditions(pH=7).TheenergeticpositionsoftheVBMandCBMstillenclosetheredoxpotentialsofwater.Thecalculatedpotentialsofthephoto-generatedelectronsandholesareUe=0.87VandUh=1.52V,respectively,andtheobtainedreactionpathways,structures,andGibbsfreeenergiesareillustratedinFigure4a,b.FortheFigure5.(a)Topand(b)sideviewsoftheSiP3monolayerand(c)Figure4.Proposedphotocatalyticpathwaysofthe(a)oxygenandbasicbuildingblock(Si6P20).(d)Electronicbandstructureand(b)hydrogenevolutionhalfreactionsontheSiP2monolayerforthePDOS.ThehorizontaldashedlineistheVBM.(e)Phononspectrum.(energeticallyfavorable)intermediatesOH*,O*,OOH*,andH*.PhonondensitiesofstatescanbefoundinFigureS1.(f)TotalenergyTheredandgreenballsareOandHatoms,respectively.GibbsfreeandsnapshotsoftheSiP3monolayerwith20O2moleculesbeforeandenergydiagramsofthe(c)OERand(d)HERontheSiP2monolayeraftera10psMDsimulationat300K.fordifferentconditions.showsp3hybridizationandcovalentbonds,satisfyingthechemicaloctetrule.Thecohesiveenergyturnsouttobe3.80OERandHER,absorptionisfavorableattheSiandPatoms,−1eVatom.ItisthusslightlylowerthanthatfoundfortheSiP2respectively,duetothehigherelectronegativityofPasmonolayer,butexceedstheliteraturevaluesreportedforthecomparedtoSi.Coexistenceofactivesitesforbothreactions−1−1SiP(3.64eVatom)andSi3P(3.78eVatom)booststhephotocatalyticefficiencybyavoidingrecombination2620monolayers.ofphotogeneratedcarriers.TheSiP3monolayerisanindirectbandgap(2.16eVattheInadarkenvironment(Uh=0V,blacklineinFigure4c),HSE06leveloftheory;Figure5d)semiconductorandtheGibbsfreeenergyincreasesineachofthefourstepsofthedynamically(Figure5e)andthermally(Figure5fandFigureOER,indicatingthatthereactiondoesnotproceedS2)stable.Theelectronandholemobilitiesareanisotropic,spontaneously.ΔGOOH*=1.50VisthelargestincreaseofwithaparticularlylargeelectronmobilityalongtheadirectiontheGibbsfreeenergyandthusthelimitingpotential,which(Table2).Generally,2Dmaterialscanenhancetheperform-consequentlyismuchsmallerthaninthecaseofg-C3N4(2.2861V).Inalightenvironment(Uh=1.52V,redlineinFigure4c),thephotogeneratedholesprovideadrivingforce,andtheTable2.SiP3Monolayer:DeformationPotentialConstantGibbsfreeenergythusdecreasesineachstep;i.e.,the(EDP),In-PlaneStiffness(C),EffectiveMass(m*),CarrierMobility(μ),andRelaxationTime(τ)alongtheaandbmoleculescanbeoxidizedintoO2inneutralconditions.LikeDirectionsat300KtheOER,theHER,whichcomprisestwosteps,doesnotproceedspontaneouslyinadarkenvironment(Figure4d),butcarriertypeE(eV)C(Jm−2)m*(m)μ(cm2V−1s−1)τ(ps)itcanoccurinalightenvironmentunder5%compression.DP0electron(a)1.1635.950.472.33×1030.68CompressionoftheSiP2monolayerthereforeenhancesnotonlytheopticalabsorption(Figure3e)butalsothedrivinghole(a)1.6835.955.7112.390.04forceofthephotogeneratedelectrons(Figure3f),enablingelectron(b)3.0173.710.58575.380.21efficientphotocatalysis.hole(b)2.6373.712.5822.940.042467https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetteranceoffieldeffecttransistorsduetoconfinementofthechargeAuthors62,63carriersinatomicallythinchannels.ConsideringitsTongYu−StateKeyLaboratoryofMetastableMaterialsmoderatebandgapandhighelectronmobility,outperformingScience&TechnologyandKeyLaboratoryfor56MicrostructuralMaterialPhysicsofHebeiProvince,Schoolof2DMoS2,theSiP3monolayerhasgreatpotentialinthisfield.ThestructuralmotifsoftheSiP2monolayer(zigzagPScience,YanshanUniversity,Qinhuangdao066004,China;chains)andSiP3monolayer(Si6P20unitsconsistingofedge-CentreforAdvancedOptoelectronicFunctionalMaterialssharingSi2P2quadranglesandSiP4pentagons)complementResearchandKeyLaboratoryforUVLight-Emittingthefourmotifs(FigureS4)reportedintheliteraturefor2DMaterialsandTechnologyofMinistryofEducation,SiP,25,26,442DSiP,24and2DSiP.26Inthecaseof2DSiP,NortheastNormalUniversity,Changchun130024,China23buckledhexagonalSi3P3rings,consistingofalternatingSiandCongWang−StateKeyLaboratoryofMetastableMaterialsPatoms,26,44andinterconnectedchairlikeSiPandSiPScience&TechnologyandKeyLaboratoryfor3332rings,inwhichtheSiatomsarefour-coordinated,25havebeenMicrostructuralMaterialPhysicsofHebeiProvince,SchoolofScience,YanshanUniversity,Qinhuangdao066004,China;reported.Inthecaseof2DSiP2,achairlikeSi3P3ringandtwo24CentreforAdvancedOptoelectronicFunctionalMaterialsSi2P3ringsshareedges,leadingtodistortedPchains.TheResearchandKeyLaboratoryforUVLight-Emittingbasicstructuralunitof2DSi3PisSi6P6,whereeachSiatomof26MaterialsandTechnologyofMinistryofEducation,acentralhexagonalringbondstoaPatom.GreatvariabilityNortheastNormalUniversity,Changchun130024,ChinainthestructuralmotifsthereforeisfoundtobecharacteristicofXuYan−StateKeyLaboratoryofMetastableMaterials2DSixPy.Science&TechnologyandKeyLaboratoryforInconclusion,wediscovertwo2Dmaterials,theSiP2andMicrostructuralMaterialPhysicsofHebeiProvince,SchoolofSiP3monolayers,throughacombinationofevolutionarysearchScience,YanshanUniversity,Qinhuangdao066004,Chinaandabinitiocalculations.FortheSiP2monolayerweobtainaJanusstructurewithhighthermalanddynamicalstabilitiesCompletecontactinformationisavailableat:https://pubs.acs.org/10.1021/acs.jpclett.0c03841resultingfromstrongSi−PandP−Pcovalentbondsthatsatisfythechemicaloctetrule.TheSiP2monolayershows−42−1AuthorContributionsremarkablyhighcarriermobilitiesoftheorderof10cmV∥s−1withpreferentialelectrontransportalongthebdirectionT.Y.andC.W.contributedequally.andholetransportalongtheadirection.Also,theopticalNotesabsorptioncoefficientishigh.Interestingly,theSiandPatomsTheauthorsdeclarenocompetingfinancialinterest.giverisetoactivesitesfortheOERandHER,respectively,andwefindthatthematerialiscapableofsplittingwaterintoO2■ACKNOWLEDGMENTSandH2undersunlight.Overall,wedemonstratethattheSiP2TheauthorsacknowledgefundingfromtheNaturalSciencemonolayerisanexcellentcandidateforphotocatalyticwaterFoundationofChinaunder21873017and21573037,thesplitting.PostdoctoralScienceFoundationofChinaundergrant2013M541283,andtheNaturalScienceFoundationofJilin■ASSOCIATEDCONTENTProvince(20190201231JC).Theresearchreportedinthis*sıSupportingInformationpublicationwassupportedbyfundingfromKingAbdullahUniversityofScienceandTechnology(KAUST).TheworkTheSupportingInformationisavailablefreeofchargeatwascarriedoutattheNationalSupercomputerCenterinhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03841.Tianjin,andthecalculationswereperformedonTianHe-1Descriptionofthecomputationalmethodsanddetailed(A).structuralinformationontheSiP2andSiP3monolayers(PDF)■REFERENCES(1)Fujishima,A.;Honda,K.ElectrochemicalPhotolysisofWaterataSemiconductorElectrode.Nature1972,238,37−38.■AUTHORINFORMATION(2)Wang,Z.;Li,C.;Domen,K.RecentDevelopmentsinCorrespondingAuthorsHeterogeneousPhotocatalystsforSolar-DrivenOverallWaterSplitting.Chem.Soc.Rev.2019,48,2109−2125.GuochunYang−StateKeyLaboratoryofMetastable(3)Lin,L.;Yu,Z.;Wang,X.CrystallineCarbonNitrideMaterialsScience&TechnologyandKeyLaboratoryforSemiconductorsforPhotocatalyticWaterSplitting.Angew.Chem.,MicrostructuralMaterialPhysicsofHebeiProvince,SchoolofInt.Ed.2019,58,6164−6175.Science,YanshanUniversity,Qinhuangdao066004,China;(4)Faraji,M.;Yousefi,M.;Yousefzadeh,S.;Zirak,M.;Naseri,N.;CentreforAdvancedOptoelectronicFunctionalMaterialsJeon,T.H.;Choi,W.;Moshfegh,A.Z.Two-DimensionalMaterialsinResearchandKeyLaboratoryforUVLight-EmittingSemiconductorPhotoelectrocatalyticSystemsforWaterSplitting.MaterialsandTechnologyofMinistryofEducation,EnergyEnviron.Sci.2019,12,59−95.NortheastNormalUniversity,Changchun130024,China;(5)Wang,L.;Zhang,Y.;Chen,L.;Xu,H.;Xiong,Y.2DPolymersAsorcid.org/0000-0003-3083-472X;Email:yanggc468@EmergingMaterialsforPhotocatalyticOverallWaterSplitting.Adv.Mater.2018,30,1801955.nenu.edu.cn(6)Fu,C.F.;Sun,J.;Luo,Q.;Li,X.;Hu,W.;Yang,J.IntrinsicUdoSchwingenschlögl−PhysicalScienceandEngineeringElectricFieldsinTwo-DimensionalMaterialsBoosttheSolar-To-Division(PSE),KingAbdullahUniversityofScienceandHydrogenEfficiencyforPhotocatalyticWaterSplitting.NanoLett.Technology(KAUST),Thuwal23955-6900,SaudiArabia;2018,18,6312−6317.orcid.org/0000-0003-4179-7231;(7)Gu,D.;Tao,X.;Chen,H.;Zhu,W.;Ouyang,Y.;Peng,Q.Email:udo.schwingenschlogl@kaust.edu.saEnhancedPhotocatalyticActivityforWaterSplittingofBlue-Phase2468https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterGeSandGeSeMonolayers:ViaBiaxialStraining.Nanoscale2019,11,(Cring)-C3N4PlaneHeterostructuralNanosheetsforOverallWater2335−2342.Splitting.J.Am.Chem.Soc.2017,139,3021−3026.(8)Zheng,Y.;Lin,L.;Ye,X.;Guo,F.;Wang,X.HelicalGraphitic(28)Jain,A.;Shin,Y.;Persson,K.A.ComputationalPredictionsofCarbonNitrideswithPhotocatalyticandOpticalActivities.Angew.EnergyMaterialsUsingDensityFunctionalTheory.Nat.Rev.Mater.Chem.2014,126,12120−12124.2016,1,15004.(9)Huang,C.;Chen,C.;Zhang,M.;Lin,L.;Ye,X.;Lin,S.;(29)Zhang,L.;Wang,Y.;Lv,J.;Ma,Y.MaterialsDiscoveryatHighAntonietti,M.;Wang,X.Carbon-DopedBNNanosheetsforMetal-Pressures.Nat.Rev.Mater.2017,2,17005.FreePhotoredoxCatalysis.Nat.Commun.2015,6,7698.(30)Oganov,A.R.;Pickard,C.J.;Zhu,Q.;Needs,R.J.Structure(10)Hu,W.;Lin,L.;Zhang,R.;Yang,C.;Yang,J.HighlyEfficientPredictionDrivesMaterialsDiscovery.Nat.Rev.Mater.2019,4,331−PhotocatalyticWaterSplittingOverEdge-ModifiedPhosphorene348.Nanoribbons.J.Am.Chem.Soc.2017,139,15429−15436.(31)Wang,Y.;Lv,J.;Zhu,L.;Ma,Y.CALYPSO:AMethodfor(11)Fang,Q.;Zhao,X.;Huang,Y.;Xu,K.;Min,T.;Chu,P.K.;Ma,CrystalStructurePrediction.Comput.Phys.Commun.2012,183,F.InterfacialElectronicStatesandSelf-Formedp-nJunctionsin2063−2070.HydrogenatedMoS2/SiCHeterostructure.J.Mater.Chem.C2018,6,(32)Wang,Y.;Lv,J.;Zhu,L.;Ma,Y.CrystalStructurePrediction4523−4530.ViaParticle-SwarmOptimization.Phys.Rev.B:Condens.MatterMater.(12)Qiao,M.;Liu,J.;Wang,Y.;Li,Y.;Chen,Z.PdSeO3Phys.2010,82,94116.Monolayer:PromisingInorganic2DPhotocatalystforDirectOverall(33)Kohn,W.;Sham,L.J.Self-ConsistentEquationsIncludingWaterSplittingWithoutUsingSacrificialReagentsandCocatalysts.J.ExchangeandCorrelationEffects.Phys.Rev.1965,140,A1133−Am.Chem.Soc.2018,140,12256−12262.A1138.(13)Zhang,X.;Liu,J.;Zhang,E.;Pan,R.;Li,Y.;Wan,X.;Wang,H.;(34)Kresse,G.;Furthmüller,J.EfficientIterativeSchemesforAbZhang,J.AtomicallyThinPdSeO3Nanosheets:APromising2DInitioTotal-EnergyCalculationsUsingaPlane-WaveBasisSet.Phys.PhotocatalystProducedbyQuaternaryAmmoniumIntercalationandRev.B:Condens.MatterMater.Phys.1996,54,11169−11186.Exfoliation.Chem.Commun.2020,56,5504−5507.(35)Blöchl,P.E.ProjectorAugmented-WaveMethod.Phys.Rev.B:(14)Wan,Y.;Wang,L.;Xu,H.;Wu,X.;Yang,J.ASimpleMolecularCondens.MatterMater.Phys.1994,50,17953−17979.DesignStrategyforTwo-DimensionalCovalentOrganicFramework(36)Paier,J.;Hirschl,R.;Marsman,M.;Kresse,G.ThePerdew-CapableofVisible-Light-DrivenWaterSplitting.J.Am.Chem.Soc.Burke-ErnzerhofExchange-CorrelationFunctionalAppliedtothe2020,142,4508−4516.G2−1TestSetUsingaPlane-WaveBasisSet.J.Chem.Phys.2005,(15)Ju,L.;Shang,J.;Tang,X.;Kou,L.TunablePhotocatalytic122,234102.WaterSplittingbytheFerroelectricSwitchina2DAgBiP2Se6(37)Heyd,J.;Scuseria,G.E.;Ernzerhof,M.HybridFunctionalsMonolayer.J.Am.Chem.Soc.2020,142,1492−1500.BasedonaScreenedCoulombPotential.J.Chem.Phys.2003,118,(16)Zhang,X.;Zhang,Z.;Wu,D.;Zhang,X.;Zhao,X.;Zhou,Z.8207−8215.ComputationalScreeningof2DMaterialsandRationalDesignof(38)Bardeen,J.;Shockley,W.DeformationPotentialsandHeterojunctionsforWaterSplittingPhotocatalysts.SmallMethodsMobilitiesinNon-PolarCrystals.Phys.Rev.1950,80,72−80.2018,2,1700359.(39)Togo,A.;Oba,F.;Tanaka,I.First-PrinciplesCalculationsof(17)Dong,L.;Lou,J.;Shenoy,V.B.LargeIn-PlaneandVerticaltheFerroelasticTransitionBetweenRutile-TypeandCaCl2-TypePiezoelectricityinJanusTransitionMetalDichalchogenides.ACSSiO2atHighPressures.Phys.Rev.B:Condens.MatterMater.Phys.Nano2017,11,8242−8248.2008,78,134106.(18)Lu,A.Y.;Zhu,H.;Xiao,J.;Chuu,C.P.;Han,Y.;Chiu,M.H.;(40)Martyna,G.J.;Klein,M.L.;Tuckerman,M.Nose-HooverCheng,C.C.;Yang,C.W.;Wei,K.H.;Yang,Y.;etal.JanusChains:TheCanonicalEnsembleViaContinuousDynamics.J.Chem.MonolayersofTransitionMetalDichalcogenides.Nat.Nanotechnol.Phys.1992,97,2635−2643.2017,12,744−749.(41)Yan,J.-A.;Stein,R.;Schaefer,D.M.;Wang,X.-Q.;Chou,M.Y.(19)Sun,M.;Schwingenschlögl,U.B2P6:ATwo-DimensionalElectron-PhononCouplinginTwo-DimensionalSiliceneandAnisotropicJanusMaterialwithPotentialinPhotocatalyticWaterGermanene.Phys.Rev.B:Condens.MatterMater.Phys.2013,88,SplittingandMetal-IonBatteries.Chem.Mater.2020,32,4795−4800.121403.(20)Ju,L.;Bie,M.;Tang,X.;Shang,J.;Kou,L.JanusWSSe(42)Zhang,X.;Qin,J.;Liu,H.;Zhang,S.;Ma,M.;Luo,W.;Liu,R.;Monolayer:AnExcellentPhotocatalystforOverallWaterSplitting.Ahuja,R.Pressure-InducedZigzagPhosphorusChainandSuper-ACSAppl.Mater.Interfaces2020,12,29335−29343.conductivityinBoronMonophosphide.Sci.Rep.2015,5,8761.(21)Tao,L.;Cinquanta,E.;Chiappe,D.;Grazianetti,C.;Fanciulli,(43)Cai,X.;Chen,Y.;Sun,B.;Chen,J.;Wang,H.;Ni,Y.;Tao,L.;M.;Dubey,M.;Molle,A.;Akinwande,D.SiliceneField-EffectTransistorsOperatingatRoomTemperature.Nat.Nanotechnol.2015,Wang,H.;Zhu,S.;Li,X.;etal.Two-DimensionalBlue-AsP10,227−231.MonolayerswithTunableDirectBandGapandUltrahighCarrier(22)Li,L.;Yu,Y.;Ye,G.J.;Ge,Q.;Ou,X.;Wu,H.;Feng,D.;Chen,MobilityShowPromisingHigh-PerformancePhotovoltaicProperties.X.H.;Zhang,Y.BlackPhosphorusField-EffectTransistors.Nat.Nanoscale2019,11,8260−8269.Nanotechnol.2014,9,372−377.(44)Ma,Z.;Zhuang,J.;Zhang,X.;Zhou,Z.SiPMonolayers:New(23)Qiao,J.;Kong,X.;Hu,Z.X.;Yang,F.;Ji,W.High-Mobility2DStructuresofGroupIV-VCompoundsforVisible-LightTransportAnisotropyandLinearDichroisminFew-LayerBlackPhotohydrolyticCatalysts.Front.Phys.2018,13,138104.Phosphorus.Nat.Commun.2014,5,4475.(45)Li,X.-B.;Guo,P.;Cao,T.-F.;Liu,H.;Lau,W.-M.;Liu,L.-M.(24)Matta,S.K.;Zhang,C.;Jiao,Y.;O’Mullane,A.;Du,A.VersatileStructures,StabilitiesandElectronicPropertiesofDefectsinTwo-DimensionalSiliconDiphosphide(SiP2)forPhotocatalyticMonolayerBlackPhosphorus.Sci.Rep.2015,5,10848.WaterSplitting.Nanoscale2018,10,6369−6374.(46)Cai,Y.;Ke,Q.;Zhang,G.;Feng,Y.P.;Shenoy,V.B.;Zhang,Y.(25)Zhang,S.;Guo,S.;Huang,Y.;Zhu,Z.;Cai,B.;Xie,M.;Zhou,W.GiantPhononicAnisotropyandUnusualAnharmonicityofW.;Zeng,H.Two-DimensionalSiP:AnUnexploredDirectBand-GapPhosphorene:InterlayerCouplingandStrainEngineering.Adv.Funct.Semiconductor.2DMater.2017,4,015030.Mater.2015,25,2230−2236.(26)Ding,Y.;Wang,Y.DensityFunctionalTheoryStudyofthe(47)Wood,J.D.;Wells,S.A.;Jariwala,D.;Chen,K.S.;Cho,E.;Silicene-likeSiXandXSi3(X=B,C,N,Al,P)HoneycombLattices:Sangwan,V.K.;Liu,X.;Lauhon,L.J.;Marks,T.J.;Hersam,M.C.TheVariousBuckledStructuresandVersatileElectronicProperties.J.EffectivePassivationofExfoliatedBlackPhosphorusTransistorsPhys.Chem.C2013,117,18266−18278.againstAmbientDegradation.NanoLett.2014,14,6964−6970.(27)Che,W.;Cheng,W.;Yao,T.;Tang,F.;Liu,W.;Su,H.;Huang,(48)Xiang,P.;Sharma,S.;Wang,Z.M.;Wu,J.;Schwingenschlögl,Y.;Liu,Q.;Liu,J.;Hu,F.;etal.FastPhotoelectronTransferinU.FlexibleC6BNMonolayersAsPromisingAnodeMaterialsfor2469https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterHigh-PerformanceK-IonBatteries.ACSAppl.Mater.Interfaces2020,12,30731−30739.(49)Xu,X.;Ma,Y.;Zhang,T.;Lei,C.;Huang,B.;Dai,Y.PredictionofTwo-DimensionalAntiferromagneticFerroelasticityinanAgF2Monolayer.NanoscaleHoriz.2020,5,1386−1393.(50)Shin,H.;Kang,S.;Koo,J.;Lee,H.;Kim,J.;Kwon,Y.CohesionEnergeticsofCarbonAllotropes:QuantumMonteCarloStudy.J.Chem.Phys.2014,140,114702.(51)Ataca,C.;Topsakal,M.;Aktürk,E.;Ciraci,S.AComparativeStudyofLatticeDynamicsofThree-andTwo-DimensionalMoS2.J.Phys.Chem.C2011,115,16354−16361.(52)Guan,J.;Zhu,Z.;Tománek,D.PhaseCoexistenceandMetal-InsulatorTransitioninFew-LayerPhosphorene:AComputationalStudy.Phys.Rev.Lett.2014,113,046804.(53)Yu,T.;Zhao,Z.;Sun,Y.;Bergara,A.;Lin,J.;Zhang,S.;Xu,H.;Zhang,L.;Yang,G.;Liu,Y.Two-DimensionalPC6withDirectBandGapandAnisotropicCarrierMobility.J.Am.Chem.Soc.2019,141,1599−1605.(54)Mamba,G.;Mishra,A.K.GraphiticCarbonNitride(g-C3N4)Nanocomposites:ANewandExcitingGenerationofVisibleLightDrivenPhotocatalystsforEnvironmentalPollutionRemediation.Appl.Catal.,B2016,198,347−377.(55)Fei,R.;Yang,L.Strain-EngineeringtheAnisotropicElectricalConductanceofFew-LayerBlackPhosphorus.NanoLett.2014,14,2884−2889.(56)Cai,Y.;Zhang,G.;Zhang,Y.W.Polarity-ReversedRobustCarrierMobilityinMonolayerMoS2Nanoribbons.J.Am.Chem.Soc.2014,136,6269−6275.(57)He,Y.;Zhang,M.;Shi,J.-J.;Zhu,Y.-H.;Cen,Y.-L.;Wu,M.;Guo,W.-H.;Ding,Y.-M.Two-Dimensionalg-C3N4/InSeHetero-structureAsaNovelVisible-LightPhotocatalystforOverallWaterSplitting:AFirst-PrinciplesStudy.J.Phys.D:Appl.Phys.2019,52,15304.(58)Guo,S.;Zhu,Z.;Hu,X.;Zhou,W.;Song,X.;Zhang,S.;Zhang,K.;Zeng,H.UltrathinTelluriumDioxide:EmergingDirectBandgapSemiconductorwithHigh-MobilityTransportAnisotropy.Nanoscale2018,10,8397−8403.(59)Fiori,G.;Bonaccorso,F.;Iannaccone,G.;Palacios,T.;Neumaier,D.;Seabaugh,A.;Banerjee,S.K.;Colombo,L.ElectronicsBasedonTwo-DimensionalMaterials.Nat.Nanotechnol.2014,9,768−779.(60)Simon,J.;Protasenko,V.;Lian,C.;Xing,H.;Jena,D.Polarization-InducedHoleDopinginWide-Band-GapUniaxialSemiconductorHeterostructures.Science2010,327,60−64.(61)Zhang,Y.;Antonietti,M.PhotocurrentGenerationbyPolymericCarbonNitrideSolids:AnInitialStepTowardsaNovelPhotovoltaicSystem.Chem.-AsianJ.2010,5,1307−1311.(62)Liu,E.;Fu,Y.;Wang,Y.;Feng,Y.;Liu,H.;Wan,X.;Zhou,W.;Wang,B.;Shao,L.;Ho,C.H.;etal.IntegratedDigitalInvertersBasedonTwo-DimensionalAnisotropicReS2Field-EffectTransistors.Nat.Commun.2015,6,6991.(63)Desai,S.B.;Madhvapathy,S.R.;Sachid,A.B.;Llinas,J.P.;Wang,Q.;Ahn,G.H.;Pitner,G.;Kim,M.J.;Bokor,J.;Hu,C.;etal.MoS2Transistorswith1-NanometerGateLengths.Science2016,354,99−102.2470https://dx.doi.org/10.1021/acs.jpclett.0c03841J.Phys.Chem.Lett.2021,12,2464−2470
此文档下载收益归作者所有