《A Step-by-Step Process-Induced Unidirectional Oriented Water Wire in the Nanotube - Jin et al. - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterAStep-by-StepProcess-InducedUnidirectionalOrientedWaterWireintheNanotubeLeJin,DepengZhang,YuZhu,XinruiYang,YiGao,andZhigangWang*CiteThis:J.Phys.Chem.Lett.2021,12,350−354ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Theorientationofwatermoleculesisakeyrequirementforthefasttransportofwaterinnanotubes.Ithasbeenacceptedthattheflipofthewaterchainfollowsaconcertedmechanism,whichhasledtotheviewthatbidirectionalwaterfluxinnanotubescanbetransformedintounidirectionaltransportwhentheorientationofwatermoleculesismaintainedinlongnanotubesundertheexternalfield.InthisLetter,onthebasisofmoleculardynamicssimulationsandfirst-principlescalculations,weconfirmedthattheflipofthewaterchainisastep-by-stepprocess,whichisdifferentfromtheperceivedconcertedmechanism.Furtheranalysisindicatedthatwithoutanexternalfield,itneededmorethan20watermoleculestomaintaintheunidirectionalsingle-filewaterflowinacarbonnanotubeatadurationtimeofseconds.Consideringthatthethicknessofthecellmembrane(normally5−10nm)islargerthanthelengththresholdoftheunidirectionalwaterwire,thisstudysuggestedthatitmaynotrequiretheexternalfieldtomaintaintheunidirectionalflowinthewaterchannelatthemacroscopictimescale.heorientationofconfinedwatermoleculesiscrucialforunidirectionalwaterflowwasmuchshorterthanpreviouslyT1−3thefasttransportofwaterinchannels.Sincetheperceived.Moreimportant,consideringthatthethicknessofdiscoveryofwaterfluxinthincarbonnanotubesin2001,cellmembrane(normally5−10nm)waslargerthanthelengthextensivestudieshavebeendevotedtoextraordinarywaterthresholdoftheunidirectionalwaterwire,itispossiblethatbehaviorsinconfinedspacesfortheirpotentialapplicationsinspontaneouswaterflowmayexistinthewaterchannelatthe1,4−10theartificialwaterchannelanddesalination.Usingmacroscopictimescale.carbonnanotubesasthedistinctmodelsystems,manyfactorsTostudytheflippingprocessofawaterchainunderhavebeenidentifiedthatinfluencewatertransportinsmallconfinement,wefirstperformedmoleculardynamics(MD)channels,suchasthedefectofwaterwiresandthediameterofsimulationsusingonetosevenH2Omoleculesin(6,6)CNT.11−13nanotubes.Atpresent,itiswellacceptedthatwithouttheWeusedtwo,three,andfourH2Omoleculesastheexampleexternalfield,bidirectionalwaterfluxexistsinshortnanotubes(othercasesaregivenintheSupportingInformation).TheDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at11:38:57(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.becauseofthefastandconcertedflipoftheorientationofthewatermoleculesintheCNTformedtheone-dimensional(1D)1waterchain.Torealizetheunidirectionalflowforpracticalchain(Figure1a).Weusedtheanglebetweenthedipoleandapplications,anumberofintricatestrategieshavebeentheplaneperpendiculartotheaxisoftheCNTtodetermine14−16proposed,includinganinducedexternalchargeorforce.theorientationofthewatermolecules(Figure1b).Figure1cDespitesignificantprogress,ourfundamentalunderstandingofshowstheevolutionofdipolestrengthwiththesimulationtimetheflipofhydrogenbondsofconfinedwaterisstilllimitedforthewaterchain.Forallthesystems,thedipoleorientationsbecauseofthelackofstudiesattheatomiclevel.flippedfrequently.TheaveragetimebetweentheflippingInthisLetter,bycombiningtheclassicalsimulationsandintervalsofthewaterchainwasabout0.8psfordimer,6.0psfirst-principlescalculations,wedemonstratedthattheflipoffortrimer,21psfortetramer,69psforpentamer,385psforhydrogenbondsforasingle-filewaterchainwithincarbonnanotubeisastep-by-stepprocess.ThepersistenttimeofthedipolealignmentforthewaterchainwasexponentialtotheReceived:November8,2020numberofthewatermolecules.Inparticular,ittookmorethanAccepted:December15,202020watermoleculestomaintaintheorientationofwaterchainPublished:December23,2020atadurationtimeofseconds.Astheunidirectionalorientationofwaterchainwasaprerequisiteforunidirectionalwaterflow,thisstudysuggestedthatthelengthofthechannelfor©2020AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c03340350J.Phys.Chem.Lett.2021,12,350−354
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.Effectofthenumberofwatermoleculesonpersistenttimeofdipolealignmentforwaterchains.(a)Modelofconfinedwaterchain.(b)Definitionofmoleculardipoleangleinwaterchains.(c)Changeofthedipolemomentwiththetimeintypicaldynamicsprocesses.Thiswaterchainconsistsoftwotosevenwatermolecules.μ0representsthedipolemomentofonewatermolecule.(d)Relationshipbetweenthelifetimeoftheorientationoftheaxialdipolemomentsandthenumberofwatermolecules.Thecoefficientaandtheconstantbare0.64and1.63foroursimulations,respectively.Nisthenumberofwatermolecules.SolidsquarepointsarethedataobtainedbyMDsimulations.Thelineisobtainedbyfittingtheformer.Itcanbeexpressedasthefunctionshowninthefigure.Thedashedpartofthelinerepresentstheextrapolationbasedonthefittedrelationship.103,106,109,1012,and1015representpicosecond(ps),nanosecond(ns),microsecond(μs),millisecond(ms),andsecond(s),respectively.∼denotesmagnitude.Figure2.Snapshotsoftrajectoriesforthetypicalmolecularorientationofwaterchains.(a)Changeofdipoleangleforeachwatermoleculeinthedifferentchain.Differentcolorsindicatethedifferentnumberofwatermolecules.(b)Flippingprocessofwatertetramerchain.(c)Comparisonoftherotationtimeofeachwatermoleculeforthetetramerchain.hexamer,and926psforheptamer.Itwasevidentthatanrelationship,whenthenumberofwatermoleculeswasincreaseinthenumberofwatermoleculesslowedthedipoleextrapolatedto12,16,andmorethan20,thedurationtimeflipsofthewaterchain,andthedurationtimeforeachrequiredtomaintainthedirectionofaxialdipolecouldreachdirectionbecamesignificantlylonger.Todescribethelifetimemicrosecond(μs),millisecond(ms),andsecond(s),ofthedirectionoftheaxialdipole,theaveragedurationtimerespectively.(t)couldbeexpressedusinganexponentialequationfittedasTobetterunderstandtheunderlyingflippingmechanismofLog(t)=a×N+b(asshowninFigure1d).Accordingtothisthewaterchaininthenanotube,snapshotsoftrajectoriesfor351https://dx.doi.org/10.1021/acs.jpclett.0c03340J.Phys.Chem.Lett.2021,12,350−354
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.Potentialenergysurfaces(PESs)andthereactionratesofflippingprocessesforwaterchainsthatconsistofdimer,trimer,andtetramer.(a−c)PESsofthewaterchains.Thestructuresinthedottedframecorrespondtothetransitionstates(TSs)orintermediates(Ints).(d)Relationshipbetweenthereactionratesandthetemperature.AllvalueswerecalculatedwiththetransitionstatetheorywithEckartTunneling19,20corrections(TST-Eckart)theoryusingtheKiSThelPprogram.Valuesofthesereactionratescorrespondingto300Kalsoaremarked.Theyellow,red,andbluelinesrepresentthereactionratesofdimer,trimer,andtetramerinCNT,respectively.thetypicalorientationofwatermoleculesareshowninFigurefourH2Omoleculesin(6,6)CNTasthemodelsystems,we2.InFigure2a,theanglesfluctuatewithinthedurationtime.analyzedthepotentialenergysurfaces.AsshowninFigure3,WhenthenumberofH2Omoleculesincreased,thefluctuationtheflippingprocessofthewaterchaingeneratedaseriesof11timeofthemoleculesincreased.Thesefluctuationsnormallydefectivestructures,whichweconsideredtobethecorrespondedtotheflipsofthemolecules,whichdidnotintermediatesofthereactionpath.Theformationoftriggereasilytheflipofthewaterchain.Wealsofoundthattheintermediateswasanessentialstepinthewaterchainflippingflipofwatermoleculesdidnotoccursimultaneously(seeinsetprocess.Thisfindingwassignificantlydifferentfrompreviously8,17ofFigure2a).Theflipofthewaterchainwasastep-by-stepconsidereddefectivestructures.processratherthanaconcertedprocessasperceivedinRemarkably,therewasonlyonetransitionstate(TS)andnopreviousliterature.Theflippingprocessofthetetramerchainintermediateforthewaterdimerchain.ForthewatertrimerinFigure2bclearlyshowstheone-by-oneflipofthewaterchain,thereweretwoTSsandoneintermediate.Whenthemoleculefromoneendtotheotherend.Moreover,asshownnumberofwatermoleculeswasfour,thenumberofTSsandinFigure2c,theaveragerotationtimeforendH2Omoleculesintermediatesincreasedtothreeandtwo,respectively.Thetakesonlyfewpicoseconds,butthatforthemiddleH2OnumberofTSsandintermediatesincreasedwithanincreaseinmoleculetookuptotensofpicoseconds.Thisdemonstratedthenumberofwatermolecules.ItisreasonabletoinferthatthatthewatermoleculesatbothendsofthechainrotatedthenumberofTSsandintermediateswouldbeN−1andN−moreeasilythanthatoftheinternalwatermolecules.To2,ifthenumberofwatermoleculeswasN.Thatistosay,whenconfirmtheprocess,thesnapshotsofthetrajectoriesforwaterthenumberofwatermoleculesexceededtwo,theflippingpentamerchainwerealsoanalyzed,whichwasconsistentwithprocesswasaccompaniednotonlybythedipoleflip,thethefeatureofthewatertetramerchain(seeFigureS1forbreakingandgeneratingofH-bonds,andtheconversionof18details).Meanwhile,thedynamicpropertiesofwaterchainindonorandacceptorrolesbetweenmolecules,butalsobythechiralCNTswereanalyzed(FigureS2).Itwasfoundthattheformationanddisappearanceofintermediates.Inaddition,averagetimebetweentheflippingintervalsofwaterchainsnotduringtheflippingprocessesofthewatertetramerchain,theonlydecreaseswiththeincreaseofCNTsdiameter,butalsoislengthsoftheO−HbondsthatdidnotparticipateintherelatedtothechiralityoftheCNT.Further,wealsoexplorebreakingandgeneratingofH-bondswere1.00−1.02Å.theflippingprocessofthe“heavy”-waterchainin(6,6)CNTHowever,thelengthsoftheO−HbondsparticipatedinH-(FigureS4).Thewatermoleculesatbothendsofthechainbondscanreach1.07Å.TheformationofH-bondstretchedrotatedmoreeasilythanthatoftheinternalwatermolecules,thecorrespondingO−Hbond,andthemagnitudeofthewhichisconsistentwiththatofthe“light”-waterchain,andthechangeswere10−2Å.Thisbondpropertyisalsoappliedtotheaveragetimebetweentheflippingintervalsofthe“heavy”-waterdimerandtrimerchain(seeFigureS5fordetails).waterchainislargerthanthatofthe“light”-waterchain,whichInaddition,notethattheenergybarriertobeovercomewasiscausedbythedeuteriumatomhavingoneneutronmorecloselyrelatedtothenumberofwatermolecules.Asshowninthanhydrogenatom.Figure3,forthewatertrimer,theenergybarrierwasaboutTorevealthephysicalflippingmechanismofthewater0.64eV.Thiswasabout0.33eVhigherthanthatofthewaterchain,weperformedfirst-principlescalculations.Usingtwotodimerchain.Forthetetramerwaterchain,itwasatleast0.5eV352https://dx.doi.org/10.1021/acs.jpclett.0c03340J.Phys.Chem.Lett.2021,12,350−354
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterhigherthanthatoftwowatermolecules.Itwasclearthatthemolecules,seeFiguresS6andS7.Thisanalysisshowedthatelongationofthewaterchainrestrainedtherotationofthethedefectivestructureswerethestableintermediates,whichwatermolecules,especiallyforthoseinthemiddleofthewaterretardedthestepwiseflipofthewaterchaininCNTandchain.Weattributedthisresulttotheenhanceddipolepreferredtheretentionoftheoriginalorientationofthemomentswiththeincreasednumberofwatermoleculesdipoles.(Figure1).Inaddition,wealsoobservedthattherotationofInthispaper,ourworkproposedastep-by-stepflippingtheendmoleculetendedtoflipbacktotheinitialstructuremodelofconfinedwaterchains,whichresultedintheabilityofratherthantosimplyinducetherotationofthenextH2Oasingle-filewaterchaintoretainitsoriginalorientationforamolecule(using(H2O)4astheexample),becausethefirstlongtimeinshortCNTs.Weconsideredthedefectiveintermediate(Int1)hadamuchlowerbackwardbarrier(0.15structuresinthewaterchaintobestableintermediatesduringeV)toTScomparedwiththeforwardbarrier(0.42eV)tothetheflippingprocess,whichwerenecessarypathwaysforwatersecondintermediate(Int2).Thisfurtherdemonstratedthatthechainflipratherthanaccidental.Thestepwiseflipofthewaterflipofthewaterchainwasastep-by-stepprocess,whichmeantmoleculesinthesingle-filewaterchaincontradictsthepreviousthatthedifficultyofthewaterchainflippingprocessiscausedpresumptionoftheconcertedmechanism,whichinducedtheprimarilybytheinteractionbetweenwatermolecules.Thisunexpectedmaintenanceoftheunidirectionalorientationofprovidedfavorablesupportforthespontaneoustransportofthewaterchain.Consideringthattheunidirectionalwaterchain.orientationofthewatermoleculesistheprerequisitefortheTofurtherunderstandthedifficultyofwaterchainflipping,unidirectionalwaterflowandthewaterchannelsofthecellwecalculatedthereactionratesfortheflippingprocessesbasedmembranenormallywerelongerthan5nm,ourdiscoveryonthetransitionstatetheorywithEckartTunnelingindicatedthatthetransmembranewaterchannelmight19,20corrections(TST-Eckart).TheequationpresentedformaintainunidirectionalwaterflowatthemacroscopictimetheTST-Eckartisasfollows:scalewithoutanexternalfield.TST/TTSTv()TTv=×χ()()T■COMPUTATIONALMETHODSTSTkTbRTΔn−ΔGTk≠,0()/TWeperformedmoleculardynamicssimulationsatthetemper-wherev()T=σeb,andχ(T)istheh()P0atureof300KusingtheGromacsprogram.21Wesetthetransmissioncoefficient.Figure3dgivestherelationshipensembleandthermostatasNVTandBerendsen,respectively.betweenthereactionratesandthetemperature.ConsideringTheconfinedsystemwasunderperiodicboundaryconditions300Kasanexample,thereactionratesofthewaterchainswithaboxsizeof25Å×25Å×39.352Å.Weemployedaconsistingoftwo,three,andfourwatermoleculesis6.97×107TransferableIntermolecularPotentialwith3Points(TIP3P)s−1,3.03×103s−1,and1.46×101s−1,respectively.Withan22watermodeltoformthewaterchainintheCNT.Theincreaseinthenumberofwatermolecules,thereactionratecarbonatomsofCNTweremodeledasunchargedLennard-decreased,makingitmoredifficulttoflipthewaterchain.JonesparticlestoensureonlythevanderWaalseffectontheFigure4showsthedetailedflippingprocessofwaterwater.Atime-stepof1fswasused,anddatawerecollectedtetramer.ThisexampleshowsthechangeintheH-bondevery1fs.Thetimeforthesimulationwas105nsforeachprocessandthelast100nsofsimulationwerecollectedforanalysis.Forfirst-principlescalculations,wecarriedouttheempirical-dispersion-correctedhybridPerdew−Burke−Ernzerhof(PBE0-D3)methodofdensityfunctionaltheoryusingthe23−25Gaussian09package.Weusedthebasissets6-311+G(d,p)and6-31G(d)forwaterandCNT,respectively.Thediameterandlengthofthearmchairtypesingle-walledFigure4.FlippingprocessforthewatertetramerchaininCNT.(6,6)CNTsimulationwere8.20and20Å,respectively.IncalculationsexceptfortheCNTpreoptimization,wefrozeallorientationduringthewaterchainflips.ThesevenstructuresoftheatomsoftheCNTtoprovidetheconstantconfinementcorrespondedtothesevenextremepointsonthePES.Ineffect.ThewaterchainwasconfinedintheCNTalongthedetail,theinitialorientationsofalloftheH-bondsweretubeaxis,andthesewatermoleculeswereconnectedtoeachupward.Fromreactanttothefirstintermediate,theH-bondofotherbyH-bonds.Fromthedifferentinitialgeometriesofthelowertwowatermoleculeswasbroken.WhentheH-bondconfinedwaterchains,wesearchedthestructuresforextremewasrebuilt,itsorientationmoveddownward.TheH-bondpoints(includingequilibriumandtransitionstate)intheorientationoftheotherthreewatermoleculesdidnotchange,rotationalprocessofwatermoleculesintheCNTandtracedhowever.Fromthefirstintermediatetothesecondthereactionpathwaysoftheflippingprocessofthewaterintermediate,theH-bondbetweenthemiddletwowaterchainsaccordingtointrinsicreactioncoordinate.moleculeswasbrokenandrebuilt,anditsorientationmoveddownward.Forthelowertwowatermolecules,theH-bond■ASSOCIATEDCONTENTorientationremaineddownward.Fromthesecondintermedi-*sıSupportingInformationatetotheproduct,theH-bondbetweentheuppertwowaterTheSupportingInformationisavailablefreeofchargeatmoleculeswasbrokenandrebuilt,anditsorientationmovedhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c03340.downward.Forthelowerthreewatermolecules,theirH-bondorientationremaineddownward.ThisdemonstratedtheReliabilityofthecomputationalmethods;statisticsoncompleteflippingprocessofthewatertetramerchain.Forwaterchainsincludingthedipolemoments,averagetheflipdetailsoftwowatermoleculesandthreewaterpersistenttimeofdipolealignment,andcomparisonof353https://dx.doi.org/10.1021/acs.jpclett.0c03340J.Phys.Chem.Lett.2021,12,350−354
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettertheaveragerotationtimeofwatermoleculesinsideandpurificationinthecomingdecades.Nature2008,452(7185),301−atbothends;dynamicpropertiesofwaterchaininchiral310.CNTs;dynamicpropertiesof“heavy”-waterchainin(10)Corry,B.Designingcarbonnanotubemembranesforefficientwaterdesalination.J.Phys.Chem.B2008,112(5),1427−1434.(6,6)CNT;O−Hstretchingvariesalongtheprocess;(11)Dellago,C.;Naor,M.M.;Hummer,G.ProtonTransportflippingprocessesofwaterdimerandtrimerchains;throughWater-FilledCarbonNanotubes.Phys.Rev.Lett.2003,90additionalfiguresandtables(PDF)(10),105902.(12)Zimmerli,U.;Gonnet,P.G.;Walther,J.H.;Koumoutsakos,P.■CurvatureinducedL-defectsinwaterconductionincarbonAUTHORINFORMATIONnanotubes.NanoLett.2005,5(6),1017−1022.CorrespondingAuthor(13)Chen,X.;Cao,G.X.;Han,A.J.;Punyamurtula,V.K.;Liu,L.;ZhigangWang−InstituteofAtomicandMolecularPhysics,Culligan,P.J.;Kim,T.;Qiao,Y.Nanoscalefluidtransport:SizeandJilinUniversity,Changchun130012,China;orcid.org/rateeffects.NanoLett.2008,8(9),2988−2992.0000-0002-3028-5196;Email:wangzg@jlu.edu.cn(14)Su,J.Y.;Guo,H.X.ControlofUnidirectionalTransportofSingle-FileWaterMoleculesthroughCarbonNanotubesinanAuthorsElectricField.ACSNano2011,5(1),351−359.LeJin−InstituteofAtomicandMolecularPhysics,Jilin(15)Wan,R.Z.;Li,J.Y.;Lu,H.J.;Fang,H.P.ControllablewaterUniversity,Changchun130012,Chinachannelgatingofnanometerdimensions.J.Am.Chem.Soc.2005,127DepengZhang−InstituteofAtomicandMolecularPhysics,(19),7166−7170.JilinUniversity,Changchun130012,China(16)Li,J.Y.;Gong,X.J.;Lu,H.J.;Li,D.;Fang,H.P.;Zhou,R.H.YuZhu−InstituteofAtomicandMolecularPhysics,JilinElectrostaticgatingofananometerwaterchannel.Proc.Natl.Acad.Sci.U.S.A.2007,104(10),3687−3692.University,Changchun130012,China(17)Best,R.B.;Hummer,G.ReactioncoordinatesandratesfromXinruiYang−InstituteofAtomicandMolecularPhysics,Jilintransitionpaths.Proc.Natl.Acad.Sci.U.S.A.2005,102(19),6732−University,Changchun130012,China;CollegeofPhysics,6737.JilinUniversity,Changchun130012,China(18)Mukhopadhyay,A.;Cole,W.T.S.;Saykally,R.J.ThewaterYiGao−ShanghaiAdvancedResearchInstitute,ChinesedimerI:Experimentalcharacterization.Chem.Phys.Lett.2015,633,AcademyofSciences,Shanghai201210,China;orcid.org/13−26.0000-0001-6015-5694(19)Eckart,C.ThePenetrationofaPotentialBarrierbyElectrons.Phys.Rev.1930,35(11),1303−1309.Completecontactinformationisavailableat:(20)Canneaux,S.;Bohr,F.;Henon,E.KiSThelP:AProgramtohttps://pubs.acs.org/10.1021/acs.jpclett.0c03340PredictThermodynamicPropertiesandRateConstantsfromQuantumChemistryResults.J.Comput.Chem.2014,35(1),82−93.Notes(21)Berendsen,H.J.C.;vanderSpoel,D.;vanDrunen,R.Theauthorsdeclarenocompetingfinancialinterest.GROMACS:Amessage-passingparallelmoleculardynamicsimplementation.Comput.Phys.Commun.1995,91(1),43−56.■(22)Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.D.;Impey,R.ACKNOWLEDGMENTSW.;Klein,M.L.ComparisonofsimplepotentialfunctionsforWearehighlyappreciativeofthevaluablediscussionsandsimulatingliquidwater.J.Chem.Phys.1983,79(2),926−935.suggestionsbyProf.YiLuo.Thisworkwassupportedbythe(23)Grimme,S.;Antony,J.;Ehrlich,S.;Krieg,H.AconsistentandNationalNaturalScienceFoundationofChina(undergrantaccurateabinitioparametrizationofdensityfunctionaldispersionnumbers11974136and11674123).Z.W.alsoacknowledgescorrection(DFT-D)forthe94elementsH-Pu.J.Chem.Phys.2010,theHigh-PerformanceComputingCenterofJilinUniversity132(15),154104.andNationalSupercomputingCenterinShanghai.(24)Adamo,C.;Barone,V.Towardreliabledensityfunctionalmethodswithoutadjustableparameters:ThePBE0model.J.Chem.■Phys.1999,110(13),6158−6170.REFERENCES(25)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;(1)Hummer,G.;Rasaiah,J.C.;Noworyta,J.P.WaterconductionRobb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,throughthehydrophobicchannelofacarbonnanotube.Nature2001,B.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.414(6860),188−190.P.;etal.Gaussian09,RevisionD.01;Gaussian,Inc.,Wallingford,CT,(2)Majumder,M.;Chopra,N.;Andrews,R.;Hinds,B.J.Enhanced2009.flowincarbonnanotubes.Nature2005,438(7064),44.(3)Joseph,S.;Aluru,N.R.Pumpingofconfinedwaterincarbon■nanotubesbyrotation-translationcoupling.Phys.Rev.Lett.2008,101NOTEADDEDAFTERASAPPUBLICATION(6),4.ThispaperwaspublishedASAPonDecmber23,2020,withan(4)Byl,O.;Liu,J.-C.;Wang,Y.;Yim,W.-L.;Johnson,J.K.;Yates,J.errorintheTOCandabstractgraphics.ThiswascorrectedinT.UnusualHydrogenBondinginWater-FilledCarbonNanotubes.J.theversionpublishedASAPonDecember24,2020.Am.Chem.Soc.2006,128(37),12090−12097.(5)Striolo,A.Themechanismofwaterdiffusioninnarrowcarbonnanotubes.NanoLett.2006,6(4),633−639.(6)Mann,D.J.;Halls,M.D.Wateralignmentandprotonconductioninsidecarbonnanotubes.Phys.Rev.Lett.2003,90(19),4.(7)Noy,A.;Park,H.G.;Fornasiero,F.;Holt,J.K.;Grigoropoulos,C.P.;Bakajin,O.Nanofluidicsincarbonnanotubes.NanoToday2007,2(6),22−29.(8)Kofinger,J.;Hummer,G.;Dellago,C.Macroscopicallyorderedwaterinnanopores.Proc.Natl.Acad.Sci.U.S.A.2008,105(36),13218−13222.(9)Shannon,M.A.;Bohn,P.W.;Elimelech,M.;Georgiadis,J.G.;Marinas,B.J.;Mayes,A.M.Scienceandtechnologyforwater354https://dx.doi.org/10.1021/acs.jpclett.0c03340J.Phys.Chem.Lett.2021,12,350−354
此文档下载收益归作者所有