2015年四川省德阳市中考数学试卷(含解析版).doc

2015年四川省德阳市中考数学试卷(含解析版).doc

ID:83579952

大小:421.50 KB

页数:31页

时间:2024-09-01

上传者:157****8071
2015年四川省德阳市中考数学试卷(含解析版).doc_第1页
2015年四川省德阳市中考数学试卷(含解析版).doc_第2页
2015年四川省德阳市中考数学试卷(含解析版).doc_第3页
2015年四川省德阳市中考数学试卷(含解析版).doc_第4页
2015年四川省德阳市中考数学试卷(含解析版).doc_第5页
2015年四川省德阳市中考数学试卷(含解析版).doc_第6页
2015年四川省德阳市中考数学试卷(含解析版).doc_第7页
2015年四川省德阳市中考数学试卷(含解析版).doc_第8页
2015年四川省德阳市中考数学试卷(含解析版).doc_第9页
2015年四川省德阳市中考数学试卷(含解析版).doc_第10页
资源描述:

《2015年四川省德阳市中考数学试卷(含解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

2015年四川省德阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的倒数为(  )A.B.3C.﹣3D.﹣12.(3分)为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是(  )A.抽取的10台电视机B.这一批电视机的使用寿命C.10D.抽取的10台电视机的使用寿命3.(3分)中国的领水面积约为370000km2,将数370000用科学记数法表示为(  )A.37×104B.3.7×104C.0.37×106D.3.7×1054.(3分)如图,已知直线AB∥CD,直线EF与AB、CD相交于N,M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG等于(  )A.15°B.30°C.75°D.150°5.(3分)下列事件发生的概率为0的是(  )A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为66.(3分)如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为(  )A.π﹣2B.π﹣C.πD.27.(3分)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是(  )第31页(共31页) A.200πcm3B.500πcm3C.1000πcm3D.2000πcm38.(3分)将抛物线y=﹣x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有(  )种.A.6B.5C.4D.39.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是(  )A.60°B.45°C.30°D.75°10.(3分)如图,在一次函数y=﹣x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有(  )A.1个B.2个C.3个D.4个11.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=(  )第31页(共31页) A.150°B.160°C.130°D.60°12.(3分)已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为(  )A.0B.1C.﹣1D.2二、填空题(每小题3分,共15分)13.(3分)分解因式:a3﹣a=  .14.(3分)不等式组的解集为  .15.(3分)在某次军事夏令营射击考核中,甲、乙两名同学各进行了5次射击,射击成绩如图所示,则这两人中水平发挥较为稳定的是  同学.16.(3分)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,Pn,使OP1=1,P1P2=3,P2P3=5,…,Pn﹣1Pn=2n﹣1(n为正整数),分别过点P1,P2,P3,…,Pn向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Qn,则点Qn的坐标为  .第31页(共31页) 17.(3分)下列四个命题中,正确的是  (填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.三、解答题(共69分,解答时应写出文字说明、证明过程或演算步骤)18.(6分)计算:2﹣1+tan45°﹣|2﹣|+÷.19.(7分)如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.第31页(共31页) 20.(11分)希望学校八年级共有4个班,在世界地球日来临之际,每班各选拔10名学生参加环境知识竞赛,评出了一、二、三等奖各若干名,校学生会将获奖情况绘制成如图所示的两幅不完整的统计图,请依据图中信息解答下列问题:(1)本次竞赛获奖总人数为  人;获奖率为  ;(2)补全折线统计图;(3)已知获得一等奖的4人为每班各一人,学校采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”夏令营,请用列举法求出抽到的两人恰好来自二、三班的概率.21.(10分)如图,直线y=x+1和y=﹣x+3相交于点A,且分别与x轴交于B,C两点,过点A的双曲线y=(x>0)与直线y=﹣x+3的另一交点为点D.(1)求双曲线的解析式;(2)求△BCD的面积.第31页(共31页) 22.(10分)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.第31页(共31页) 23.(11分)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.第31页(共31页) 24.(14分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.第31页(共31页) 2015年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的倒数为(  )A.B.3C.﹣3D.﹣1【考点】17:倒数.【分析】直接根据倒数的定义即可得出结论.【解答】解:∵(﹣)×(﹣3)=1,∴﹣的倒数为﹣3.故选:C.【点评】本题考查的是倒数的定义,熟知乘积是1的两数互为倒数是解答此题的关键.2.(3分)为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是(  )A.抽取的10台电视机B.这一批电视机的使用寿命C.10D.抽取的10台电视机的使用寿命【考点】V3:总体、个体、样本、样本容量.【分析】根据样本的定义即可得出答案.【解答】解:根据样本的定义可知为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,则10台电视机的使用寿命是样本,故选:D.【点评】本题主要考查简单随机抽样的有关定义,掌握样本、总体、个体、样本容量等概念是解题的关键.3.(3分)中国的领水面积约为370000km2,将数370000用科学记数法表示为(  )A.37×104B.3.7×104C.0.37×106D.3.7×105第31页(共31页) 【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:370000=3.7×105,故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,已知直线AB∥CD,直线EF与AB、CD相交于N,M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG等于(  )A.15°B.30°C.75°D.150°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠MND的度数,再由角平分线的定义即可得出结论.【解答】解:∵直线AB∥CD,∠BNE=30°,∴∠DME=∠BNE=30°.∵MG是∠EMD的角平分线,∴∠EMG=∠EMD=15°.故选:A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)下列事件发生的概率为0的是(  )A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6【考点】X3:概率的意义.第31页(共31页) 【专题】11:计算题.【分析】找出不可能事件,即为概率为0的事件.【解答】解:事件发生的概率为0的是画一个三角形,使其三边的长分别为8cm,6cm,2cm.故选:C.【点评】此题考查了概率的意义,熟练掌握概率的意义是解本题的关键.6.(3分)如图,已知⊙O的周长为4π,的长为π,则图中阴影部分的面积为(  )A.π﹣2B.π﹣C.πD.2【考点】MN:弧长的计算;MO:扇形面积的计算.【分析】首先根据⊙O的周长为4π,求出⊙O的半径是多少;然后根据的长为π,可得的长等于⊙O的周长的,所以∠AOB=90°;最后用⊙O的面积的减去△AOB的面积,求出图中阴影部分的面积为多少即可.【解答】解:∵⊙O的周长为4π,∴⊙O的半径是r=4π÷2π=2,∵的长为π,∴的长等于⊙O的周长的,∴∠AOB=90°,∴S阴影==π﹣2.故选:A.【点评】此题主要考查了扇形面积的计算,以及弧长的计算方法,要熟练掌握,解答此题的关键是要明确求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.7.(3分)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是(  )第31页(共31页) A.200πcm3B.500πcm3C.1000πcm3D.2000πcm3【考点】U3:由三视图判断几何体.【分析】首先根据商品的外包装盒的三视图确定几何体的形状是圆柱,然后根据圆柱的体积=底面积×高,求出这个包装盒的体积是多少即可.【解答】解:根据图示,可得商品的外包装盒是底面直径是10cm,高是20cm的圆柱,∴这个包装盒的体积是:π×(10÷2)2×20=π×25×20=500π(cm3).故选:B.【点评】(1)此题主要考查了由三视图想象几何体的形状,首先分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)此题还考查了圆柱的体积的求法,要熟练掌握,解答此题的关键是要明确:圆柱的体积=底面积×高.8.(3分)将抛物线y=﹣x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有(  )种.A.6B.5C.4D.3【考点】H6:二次函数图象与几何变换.【分析】首先根据题意画出函数图象,然后平移直线y=k+b,找出两函数图象的交点个数即可.【解答】解:如图1,所示:函数图象没有交点.第31页(共31页) 如图2所示:函数图象有1个交点.如图3所示,图象有两个交点.如图4所示函数图象有3个交点.第31页(共31页) 如图5所示,图象有4个交点.综上所述,共有5种情况.故选:B.【点评】本题主要考查的是二次函数图象与一次函数图象的交点问题,根据题意画出函数图象是解答此类问题的常用方法.9.(3分)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,若点A关于CD所在直线的对称点E恰好为AB的中点,则∠B的度数是(  )A.60°B.45°C.30°D.75°第31页(共31页) 【考点】KP:直角三角形斜边上的中线;P2:轴对称的性质.【分析】根据轴对称的性质可知∠CED=∠A,根据直角三角形斜边上的中线的性质、等腰三角形的性质可得∠ECA=∠A,∠B=∠BCE,根据等边三角形的判定和性质可得∠CED=60°,再根据三角形外角的性质可得∠B的度数,从而求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,CD为AB边上的高,点A关于CD所在直线的对称点E恰好为AB的中点,∴∠CED=∠A,CE=BE=AE,∴∠ECA=∠A,∠B=∠BCE,∴△ACE是等边三角形,∴∠CED=60°,∴∠B=∠CED=30°.故选:C.【点评】本题考查轴对称的性质,直角三角形斜边上的中线的性质、等腰三角形的性质,等边三角形的判定和性质,三角形外角的性质,关键是得到∠CED=60°.10.(3分)如图,在一次函数y=﹣x+6的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,则在x轴的上方满足上述条件的点P的个数共有(  )A.1个B.2个C.3个D.4个【考点】F8:一次函数图象上点的坐标特征.【分析】分两种情况:①当0<x<6时,②当x<0时列出方程,分别求解即可.【解答】解:①当0<x<6时,设点P(x,﹣x+6),∴矩形PBOA的面积为5,∴x(﹣x+6)=5,化简x2﹣6x+5=0,解得x1=1,x2=5,∴P1(1,5),P2(5,1),②当x<0时,设点P(x,﹣x+6),第31页(共31页) ∴矩形PBOA的面积为5,∴﹣x(﹣x+6)=5,化简x2﹣6x﹣5=0,解得x3=3﹣,x4=3+(舍去),∴P3(3﹣,3+),∴在x轴的上方满足上述条件的点P的个数共有3个.故选:C.【点评】本题主要考查了一次函数上点的坐标特征,解题的关键是要分两种情况讨论求解.11.(3分)如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=(  )A.150°B.160°C.130°D.60°【考点】JA:平行线的性质;KH:等腰三角形的性质;L3:多边形内角与外角.【分析】根据两直线平行,同旁内角互补求出∠E,然后判断出△ADE是等边三角形,根据等边三角形的三个角都是60°可得∠EAD=60°,再求出∠BAD=60°,然后根据等腰三角形两底角相等和四边形的内角和等于360°计算即可得解.【解答】解:∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=(360°﹣∠BAD)=(360°﹣60°)=150°.故选:A.【点评】第31页(共31页) 本题考查了等腰三角形的性质,平行线的性质,等边三角形的判定与性质,等腰三角形的性质,以及多边形的内角和,熟记各性质并准确识图,理清图中各角度之间的关系是解题的关键.12.(3分)已知m=x+1,n=﹣x+2,若规定y=,则y的最小值为(  )A.0B.1C.﹣1D.2【考点】F5:一次函数的性质.【专题】16:压轴题;23:新定义.【分析】根据x+1≥﹣x+2和x+1<﹣x+2得出x的取值范围,列出关系式解答即可.【解答】解:因为m=x+1,n=﹣x+2,当x+1≥﹣x+2时,可得:x≥0.5,则y=1+x+1+x﹣2=2x,则y的最小值为1;当x+1<﹣x+2时,可得:x<0.5,则y=1﹣x﹣1﹣x+2=﹣2x+2,则y>1,故选:B.【点评】此题考查一次函数问题,关键是根据题意列出关系式分析.二、填空题(每小题3分,共15分)13.(3分)分解因式:a3﹣a= a(a+1)(a﹣1) .【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.(3分)不等式组的解集为 ﹣1<x≤3 .【考点】CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.第31页(共31页) 【解答】解:由①得x>﹣1,由②得x≤3.故原不等式组的解集为﹣1<x≤3.故答案为:﹣1<x≤3.【点评】此题考查的是解一元一次方程组的方法,解一元一次方程组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.15.(3分)在某次军事夏令营射击考核中,甲、乙两名同学各进行了5次射击,射击成绩如图所示,则这两人中水平发挥较为稳定的是 甲 同学.【考点】VC:条形统计图;W7:方差.【分析】先根据平均数的定义分别计算出甲和乙的平均数,甲=乙=7;再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2]计算出它们的方差,然后根据方差的意义即可确定答案.【解答】解:∵甲=(6+7+6+8+8)=7,乙=(5+7+8+8+7)=7;∴S2甲=[(6﹣7)2+(7﹣7)2+(6﹣7)2+(8﹣7)2+(8﹣7)2=,S2乙=[(5﹣7)2+(7﹣7)2+(8﹣7)2+(8﹣7)2+(7﹣7)2=;∴S2甲<S2乙,∴甲在射击中成绩发挥比较稳定.故答案为:甲.【点评】本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2第31页(共31页) ];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.16.(3分)如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1,P2,P3,…,Pn,使OP1=1,P1P2=3,P2P3=5,…,Pn﹣1Pn=2n﹣1(n为正整数),分别过点P1,P2,P3,…,Pn向射线OA作垂线段,垂足分别为点Q1,Q2,Q3,…,Qn,则点Qn的坐标为 (n2,n2) .【考点】D5:坐标与图形性质;S9:相似三角形的判定与性质.【专题】2A:规律型.【分析】利用特殊直角三角形求出OPn的值,再利用∠AOB=60°即可求出点Qn的坐标.【解答】解:∵△AOB为正三角形,射线OC⊥AB,∴∠AOC=30°,又∵Pn﹣1Pn=2n﹣1,PnQn⊥OA,∴OQn=(OP1+P1P2+P2P3+…+Pn﹣1Pn)=(1+3+5+…+2n﹣1)=n2,∴Qn的坐标为(n2•cos60°,n2•sin60°),∴Qn的坐标为(n2,n2).故答案为:(n2,n2).【点评】本题主要考查了坐标与图形性质,解题的关键是正确的求出OQn的值.17.(3分)下列四个命题中,正确的是 ①④ (填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.【考点】O1:命题与定理.第31页(共31页) 【专题】16:压轴题.【分析】根据三角形的外心定义对①进行判断;利用分类讨论的思想对②③进行判断;根据不等式的性质对④进行判断.【解答】解:三角形的外心是三角形三边垂直平分线的交点,所以①正确;函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=或1,所以②错误;半径分别为1和2的两圆相切,则两圆的圆心距为1或3;若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1,所以④正确.故答案为:①④.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.三、解答题(共69分,解答时应写出文字说明、证明过程或演算步骤)18.(6分)计算:2﹣1+tan45°﹣|2﹣|+÷.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】分别根据特殊角的三角函数值、绝对值的性质及负整数指数幂的计算法则分别计算出各数,再根据实数混合运算的法则进行计算即可;【解答】解:原式=+1﹣(3﹣2)+3÷2=﹣1+=2.【点评】本题考查的是分式的化简求值,熟知特殊角的三角函数值、绝对值的性质及负整数指数幂的计算法则是解答此题的关键.19.(7分)如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.第31页(共31页) 【考点】L8:菱形的性质.【分析】(1)根据菱形的对角线平分一组对角,得出∠ABD=∠CBD,再根据∠ABM=2∠BAM,得出∠ABD=∠BAM,然后根据等角对等边证明即可.(2)根据相似三角形面积的比等于相似比的平方即可求得.【解答】(1)证明:∵四边形ABCD是菱形,∴∠ABD=∠CBD,∵∠ABM=2∠BAM,∴∠ABD=∠BAM,∴AG=BG;(2)解:∵AD∥BC,∴△ADG∽△MBG,∴=,∵点M为BC的中点,∴=2,∴=()2=4∵S△BMG=1,∴S△ADG=4.【点评】本题考查了菱形的性质,等腰三角形的判定,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.20.(11分)希望学校八年级共有4个班,在世界地球日来临之际,每班各选拔10名学生参加环境知识竞赛,评出了一、二、三等奖各若干名,校学生会将获奖情况绘制成如图所示的两幅不完整的统计图,请依据图中信息解答下列问题:(1)本次竞赛获奖总人数为 20 人;获奖率为 50% ;(2)补全折线统计图;第31页(共31页) (3)已知获得一等奖的4人为每班各一人,学校采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”夏令营,请用列举法求出抽到的两人恰好来自二、三班的概率.【考点】VB:扇形统计图;VD:折线统计图;X6:列表法与树状图法.【专题】11:计算题.【分析】(1)先利用扇形统计图计算出一等奖所占的百分比,然后用一等奖的人数除以它所占百分比即可得到获奖总人数,再计算获奖率;(2)分别计算出二、三等奖的人数,然后补全折线统计图;(3)利用树状图法列举出所有的可能,进而利用概率公式求出即可.【解答】解:(1)本次竞赛获奖总人数=4÷=20(人),获奖率=×100%=50%;故答案为20;50%;(2)三等奖的人数=20×50%=10(人),二等奖的人数=20﹣4﹣10=6(人),折线统计图为:第31页(共31页) (3)画树状图为:共有12种等可能的结果数,其中抽到的两人恰好来自二、三班的有2种情况,所以抽到的两人恰好来自二、三班的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了折线统计图和扇形统计图的应用,根据题意结合图形得出正确信息是解题关键.21.(10分)如图,直线y=x+1和y=﹣x+3相交于点A,且分别与x轴交于B,C两点,过点A的双曲线y=(x>0)与直线y=﹣x+3的另一交点为点D.(1)求双曲线的解析式;(2)求△BCD的面积.【考点】G8:反比例函数与一次函数的交点问题.【专题】11:计算题.【分析】(1)先通过解方程组得A(1,2),然后把A(1,2)代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数与一次函数的交点问题,通过解方程组得D(2,1),再利用x轴上点的坐标特征确定B点和C点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)解方程组得,则A(1,2),第31页(共31页) 把A(1,2)代入y=得k=1×2=2,所以反比例函数解析式为y=;(2)解方程组得或,则D(2,1),当y=0时,x+1=0,解得x=﹣1,则B(﹣1,0);当y=0时,﹣x+3=0,解得x=3,则C(3,0),所以△BCD的面积=×(3+1)×1=2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(10分)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.【考点】8A:一元一次方程的应用;B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为76元列方程求解即可;(2)设打折数为m,根据利润大于等于30元列不等式求解即可;(3)设vip客户享受的降价率为x,然后根据VIP第31页(共31页) 客户与普通用户批发件数相同列方程求解即可.【解答】解:(1)设里料的单价为x元/米,面料的单价为(2x+10)元/米.根据题意得:0.8x+1.2(2x+10)=76.解得:x=20.2x+10=2×20+10=50.答:面料的单价为50元/米,里料的单价为20元/米.(2)设打折数为m.根据题意得:150×﹣76﹣14≥30.解得:m≥8.∴m的最小值为8.答:m的最小值为8.(3)150×0.8=120元.设vip客户享受的降价率为x.根据题意得:,解得:x=0.05经检验x=0.05是原方程的解.答;vip客户享受的降价率为5%.【点评】本题主要考查的是一元一次方程、一元一次不等式、分式方程的应用,找出题目的相等关系和不等关系是解题的关键.23.(11分)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.第31页(共31页) 【考点】KK:等边三角形的性质;MD:切线的判定.【专题】16:压轴题.【分析】(1)连结OB、OD、OC,如图1,由于D为BC的中点,根据垂径定理的推理得OD⊥BC,∠BOD=∠COD,再根据圆周角定理得∠BOD=∠M=60°,则∠OBD=30°,所以∠ABO=90°,于是根据切线的判定定理得AB是⊙O的切线;(2)作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,根据等边三角形三角形的性质得AD平分∠BAC,∠BAC=60°,则利用角平分线性质得DH=DN,根据四边形内角和得∠HDN=120°,由于∠EDF=120°,所以∠HDE=∠NDF,接着证明△DHE≌△DNF得到HE=NF,于是BE+CF=BH+CN,再计算出BH=BD,CN=DC,则BE+CF=BC,于是可判断BE+CF的值是定值,为等边△ABC边长的一半,再计算BC的长即可.【解答】(1)证明:连结OB、OD、OC,如图1,∵D为BC的中点,∴OD⊥BC,∠BOD=∠COD,∴∠ODB=90°,∵∠BMC=∠BOC,∴∠BOD=∠M=60°,∴∠OBD=30°,∵△ABC为正三角形,∴∠ABC=60°∴∠ABO=60°+30°=90°,∴AB⊥OB,∴AB是⊙O的切线;(2)解:BE+CF的值是为定值.第31页(共31页) 作DH⊥AB于H,DN⊥AC于N,连结AD,如图2,∵△ABC为正三角形,D为BC的中点,∴AD平分∠BAC,∠BAC=60°,∴DH=DN,∠HDN=120°,∵∠EDF=120°,∴∠HDE=∠NDF,在△DHE和△DNF中,,∴△DHE≌△DNF,∴HE=NF,∴BE+CF=BH﹣EH+CN+NF=BH+CN,在Rt△DHB中,∵∠DBH=60°,∴BH=BD,同理可得CN=OC,∴BE+CF=DB+DC=BC,∵BD=OB•cos30°=,∴BC=2,∴BE+CF的值是定值,为.第31页(共31页) 【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质.24.(14分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE第31页(共31页) 分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标;(3)由P在抛物线的对称轴上,设出P坐标为(﹣1,m),如图所示,过A′作A′N⊥对称轴于N,由旋转的性质得到一对边相等,再由同角的余角相等得到一对角相等,根据一对直角相等,利用AAS得到△A′NP≌△PMA,由全等三角形的对应边相等得到A′N=PM=|m|,PN=AM=2,表示出A′坐标,将A′坐标代入抛物线解析式中求出相应m的值,即可确定出P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴OB=3,∵OC=OB,∴OC=3,∴c=3,∴,解得:,∴所求抛物线解析式为:y=﹣x2﹣2x+3;(2)如图2,过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0),∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,∴S四边形BOCE=BF•EF+(OC+EF)•OF,=(a+3)•(﹣a2﹣2a+3)+(﹣a2﹣2a+6)•(﹣a),=﹣﹣a+,=﹣(a+)2+,第31页(共31页) ∴当a=﹣时,S四边形BOCE最大,且最大值为.此时,点E坐标为(﹣,);(3)∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,点P在抛物线的对称轴上,∴设P(﹣1,m),∵线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,①当m≥0时,∴PA=PA1,∠APA1=90°,如图3,过A1作A1N⊥对称轴于N,设对称轴于x轴交于点M,∴∠NPA1+∠MPA=∠NA1P+∠NPA1=90°,∴∠NA1P=∠NPA,在△A1NP与△PMA中,,∴△A1NP≌△PMA,∴A1N=PM=m,PN=AM=2,∴A1(m﹣1,m+2),代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,解得:m=1,m=﹣2(舍去),②当m<0时,要使P2A=P2A,2,由图可知A2点与B点重合,∵∠AP2A2=90°,∴MP2=MA=2,∴P2(﹣1,﹣2),∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).第31页(共31页) 【点评】本题考查了全等三角形的判定与性质,待定系数法求二次函数,二次函数的性质,四边形的面积,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.第31页(共31页)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭