《6-戊基-2H-吡喃-2-...菌活性及其对病害的防治效果_刘曼》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
农药学学报 2023, 25(1): 104-116http://www.nyxxb.cnChineseJournalofPesticideScienceE-mail: nyxuebao@263.net•研究论文•doi: 10.16801/j.issn.1008-7303.2022.01226-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果刘曼, 牛启尘, 尹淑霞*, 王子玥(北京林业大学草业与草原学院,北京 100083)摘要:由Clarireedia spp.引起的草坪币斑病是对草坪最具有破坏性的病害之一,6-戊基-2H-吡喃(6-pentyl-2H-pyran-2-one, 6PP)是木霉菌属(Trichoderma spp.)重要的抗菌次生代谢产物。为探究6PP对草坪币斑病菌的抑菌活性、防治效果以及草坪币斑病菌对6PP的生理响应,本研究采用菌丝生长速率法测定了6PP对草坪币斑病菌的抑制活性,分别采用室内离体叶片和盆栽试验测定了6PP对草坪币斑病的预防和治疗作用,并分析了在6PP影响下草坪币斑病菌菌丝结构及抗逆相关酶活性的变化。结果显示,6PP对两种草坪币斑病菌C.jacksonii和C.monteithiana均具有高抑制活性,其中对C.monteithiana的平均有效抑制中浓度(EC50)为0.37 μg/mL,对C.jacksonii的EC50值为0.04 μg/mL;经6PP处理后,C.jacksonii和C.monteithiana菌丝生长异常,细胞膜通透性增加,相对电导率上升,细胞膜脂过氧化,细胞膜受损;C.jacksonii过氧化物酶(POD)的活性显著上升,但pH值不变,而C.monteithiana超氧化物歧化酶(SOD)活性、pH值和胞外多糖(EPS)显著上升。1 μg/mL的6PP在离体条件下对币斑病的预防效果为91.14%;盆栽条件下,防治效果为72.21%。6PP对草坪币斑病菌抑制作用显著,且在离体和盆栽条件下对病害均有良好的防治效果,具备开发成生态友好型杀菌剂的潜力。关键词:草坪币斑病菌;6-戊基-2H-吡喃;抑菌活性;草坪币斑病;防治效果;病原生理响应中图分类号:S482.7;TQ458 文献标志码:AInhibitoryactivityof6-pentyl-2H-pyran-2-oneagainstthepathogenesisfungiofdollarspotanditscontrolefficacyLIU Man, NIU Qichen, YIN Shuxia*, WANG Ziyue(SchoolofGrasslandScience,BeijingForestryUniversity,Beijing100083,China)Abstract:Turf dollar spot, caused by Clarireedia spp., is one of the most destructive fungal diseases onturf. 6-Pentyl-2H-pyran-2-one (6PP) is a critical antifungal secondary metabolite produced byTrichodermaspp. In order to explore the antifungal activity of 6PP againstClarireedia spp. and itscontrol efficacy to Turf dollar spot, the inhibition activity of 6PP onClarireedia spp. was measured by收稿日期:2022-03-18;录用日期:2022-10-11;网络首发日期:2022-10-14.Received:March 18, 2022;Accepted:October 11, 2022;Publishedonline:October 14, 2022.URL:https://doi.org/10.16801/j.issn.1008-7303.2022.0122http://www.nyxxb.cn/cn/article/doi/10.16801/j.issn.1008-7303.2022.0122基金项目:国家林业和草原局委托项目 (2021045001);国家自然科学基金 (U20A2005).Funding:Supported by Project Entrusted by the State Forestry and Grassland Administration (2021045001); National Natural Science Foundationof China (U20A2005).第一作者(First author):刘曼,18734484602@163.com. *通信作者(Corresponding author):尹淑霞,yinsx369@163.com.The authors declare that they have no competing interests.
1No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果105mycelial growth rate method, and the protective and curative activities of 6PP against the disease wasmeasured on detached leaves and potted plants. The changes in mycelial structure and activities of stressresistance related enzyme of the pathogens under 6PP treatment were analyzed. The results showed that6PP had efficient inhibition activity on C.jacksonii and C.monteithiana. The average effectiveinhibitory medium concentration (EC50) of 6PP to C.monteithiana was 0.37 μg/mL, and the averageEC50 value to C.jacksonii was 0.04 μg/mL. After being treated with 6PP, mycelial of bothC.jacksonii andC.monteithianagrew abnormally, cell membrane permeability and relative conductivity as well asperoxidated cell membrane increased. The peroxidase (POD) activity ofC.jacksonii increasedsignificantly although its pH remained unchanged, while the superoxide dismutase (SOD) activity, pHand exopolysaccharides (EPS) of C.monteithiana increased significantly. The preventive effects of1 μg/mL 6PP on dollar spot were 91.14% invitro and 72.21% in pots. 6PP has a significant inhibitoryeffect on Turf dollar spot and has a good control efficacy on the diseaseinvitro and in pots. The studyrevealed the potential of 6PP to be an eco-friendly fungicide preventing Turf dollar spot.Keywords:Clarireediaspp.; 6-pentyl-2H-pyran-2-one; antifungal activity; Turf dollar spot; controlefficacy; pathogen physiological response草坪币斑病是温带地区精细化养护草坪上最生的可溶性代谢物对由Colletotrichumfalcatum引严重的真菌性病害之一。研究显示,草坪币斑病起的甘蔗红腐病表现出良好的生防效果,且在大的致病菌为Clarireedia属真菌,共有6个种,其田条件下防治效果依然高效稳定[17]。使用人工合中C.jacksonii和C.monteithiana在世界范围成或提取的木霉菌抑菌代谢物代替木霉菌防治植内分布广泛,其寄主范围广,几乎能侵染所有的物病害,可以减少活体微生物在田间使用过程中草坪草[1-2]。出现的效果不稳定的问题,同时兼具利用木霉菌近年来,广泛使用多菌灵、二甲酰亚胺、脱活体生物防治病害的优势。甲基抑制剂 (DMI) 和琥珀酸脱氢酶抑制剂 (SDHI)6-戊基-2H-吡喃-2-酮(6-pentyl-2H-pyran-2-等化学杀菌剂保护草坪草免受草坪币斑病菌侵one, 以下简称6PP,结构式见图式1)于1972年在害,但已有文献表明,币斑病菌株对上述杀菌剂绿色木霉T.viride中首次发现并分离提纯。它是均产生了不同程度的抗性[3-5]。此外,化学杀菌剂一种无毒的、具有椰子香味的不饱和内酯,能从可能通过地表径流和土壤入渗进入地下水,对环多种木霉菌的培养物中分离得到,包括橘绿木霉境、动物以及人类健康产生危害[6-7],因此亟需T.citrinoviride、哈茨木霉、康宁木霉、深绿木霉开发绿色、安全、高效的新型杀菌剂防治草坪币T.atroviride和绿色木霉T.viride。6PP具有广谱斑病。性抗真菌活性,对菜豆大斑病菌Macrophomina自20世纪30年代以来,木霉菌Trichodermaphaseolina、立枯丝核菌Rhizoctoniasolani、罗氏spp. 以其优良的抑菌效果引起了研究学者们的广菌核Sclerotiumrolfsii、尖孢镰刀菌Fusarium泛关注[8-10]。木霉菌具有对环境友好、病菌不易产oxysporum、辣椒疫霉Phytophthoracapsica和甜瓜生抗药性等优点,但在实际生产应用中易受立地疫霉P.melonis具有良好的抑菌作用,极具应用潜条件影响,导致田间防治时存在防治效果不稳定力[18-21]。目前尚未见有关利用6PP防治草坪币斑病的问题[11-12]。木霉菌次生代谢物与木霉菌的生物活的相关报道,其抑菌活性、防治效果和机理有待性功能密切相关[13-14]。研究表明,木霉菌代谢产物验证和探索。本文研究了6PP对2种草坪币斑病可以激活葡萄藤对霜霉病病原菌Plasmopara菌的抑菌活性和防治效果,并通过一系列生理生viticola的防御机制[15]。康宁木霉T.koningii和哈化指标的测定,探究6PP对草坪币斑病菌的抑菌茨木霉T.harzianum产生的哈茨酮内酯具有抗真活性以及对病害的防治效果,旨在为草坪币斑病菌活性和调节植物生长的双重作用[16]。木霉菌产的低毒科学防治提供参考。
2106农药学学报Vol. 251.3.2 6PP对菌株的抑制效率 采用菌丝生长速率法[23]测定6PP对6株病菌的有效抑制中浓度OO图式16-戊基-2H-吡喃-2-酮结构式(EC50)。菌株在MM培养基上预培养3 d后,在菌Scheme1Structuralformulaof6-pentyl-2H-pyran-2-one落边缘取直径6 mm的菌饼,分别接种到最终质量浓度为0、0.025、0.05、0.075、0.1、0.125、1材料与方法0.15、0.175、0.2、0.225、0.25和0.275 μg/mL1.1供试材料6PP的MM平板上,接菌后将平板置于25 ℃黑供试菌株来自北京林业大学草地保护实验室,暗条件下培养,以不含6PP的平板为对照。对照菌株编号为N8、N13、N14、N18、73和112,其组菌落直径超过培养皿直径2/3时,采用十字交叉中N8、73、112为Clarireediajacksonii,N13、法测量各处理的菌落直径,计算6PP对币斑病菌N14、N18为C.monteithiana;供试草坪草为匍匐菌丝生长的抑制率,求出毒力回归方程。每个浓翦股颖A4 Agrostisstolonifera L.‘A4’。基本培养度重复3次,试验重复2次。基(MM):10 g葡萄糖、1.5 g K2HPO4、2 g KH2PO4、1.3.3 6PP对币斑病菌菌丝形态的影响 在培养2 d1 g (NH4) 2SO4、0.5 g MgSO4 • 7H2O、2 g酵母提的菌落 (菌株N8和N18) 的边缘取菌饼转移到含取物、15 g琼脂粉加去离子水定容到1 L,灭菌;有0.075 μg/mL 6PP的MM培养基上,以不含6PP的培养基为对照。在25 ℃下培养3 d后,取马铃薯葡萄糖液体培养基(PDB):20 g葡萄糖、适量菌丝在光学显微镜下观察菌丝形态。每个菌6 g马铃薯浸粉加去离子水定容到1 L,灭菌。6PP株设3个重复,试验重复2次。购自北京迈瑞达科技有限公司,纯度为97%。1.3.4 免疫组织化学染色 币斑病菌N8和1.2仪器N18用于对活性氧(ROS)、过氧化氢(H2O2)进行DZF-6020MBE真空干燥箱 (上海博讯有限公染色,参照Mojicak等[24]方法。Tris-HCl缓冲液司);DL-CJ-2ND I型超净工作台 (北京东联哈尔仪(0.1 mol/L, pH = 7.6)、质量浓度为0.3%的氯化钴器制造有限公司;SX700高压灭菌锅 (天美科学仪(CoCl2) 按照体积比 9 : 1混合,将不同处理的菌丝器有限公司);SPX型智能生化培养箱 (宁波江南浸泡在3 mL 1 mg/mL 的3,3′-二氨基联苯胺(3,3′-仪器厂);DDSJ-318型电导率仪 (北京扬海伟业科diaminobenzidine)染液中,显色时加入5~10 mL技公司);FE28 pH计 (大连贝尔分析仪器有限公30% H2O2 , 染色8 h后,将菌丝浸泡在无水乙醇中司);岛津UV-2600i型紫外线分光光度计 (上海滴脱色12 h,光学显微镜下观察染色后的菌丝。冠有限公司);Multifuge X1R 型高速冷冻离心机1.3.5 6PP对币斑病菌细胞膜通透性的影响 参(赛默飞世尔科技有限公司);ECLIPSE E100型电照Duan等[25]的方法,将币斑病菌N8、N18接种子显微镜 (南京江南永新光学有限公司)。于MM上,25 ℃培养3 d后,打取5个直径6 mm1.3试验方法的菌饼,接种于含有100 mL PDB的250 mL摇菌1.3.1 菌株的鉴定 参照Hu等[22]的方法,将瓶中,于25 ℃、175 r/min恒温摇床上摇培36 h6株供试菌株在MM平板上于25 ℃下黑暗培养后,处理组添加0.075 μg/mL的6PP,对照组添加3 d后,刮取菌丝,使用OMEGA 真菌DNA提取等量的无菌水,继续培养36 h。于5000 r/min下试剂盒 (百迈客生物科技有限公司) 提取病原菌离心10 min后收集菌丝,上清液备用。称取菌丝DNA。随后利用真菌通用正向引物ITS-1(5′-0.3 g,悬浮于20 mL的无菌水中,分别在0、5、TCCGTAGGTGAACCTGCGG-3′)和反向引物ITS-10、20、40、60、80、100、120、140、160和4(5′-AACTTGCAATGTGG-3′)对币斑病菌的180 min时使用电导率仪测定溶液的电导率。之后ITS基因进行扩增和测序,将测序结果进行拼接将溶液煮沸5 min,并测定最终的电导率。每个菌后,于NCBI (National Center for Biotechnology株设3个重复,试验重复2次。按照公式 (1) 计算Information)上进行BLAST序列相似性搜索。利菌体的相对电导率。用MEGA7.0软件和基于1000次重复的引导值构R1RC=%=100(1)建系统发育树。标准菌株编号及其参考文献见附R2加材料表S1。式中:RC为相对电导率,%;R1为某时间的
3No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果107电导率,μS/cm;R2为再放入恒温水浴中加热预防作用测定:选取位于同一位置,大小相5min,取出冷却至室温后再测定的电导率,μS/cm。仿,健康且展开的草坪叶片作为试验试材,将具有相似长度 (7 cm) 的叶片切下并放在无菌培养皿1.3.6 6PP对币斑病菌pH值的影响 按照1.3.5节方法培养草坪币斑病菌N8和N18,打取5个直(直径9 cm) 中被无菌水完全浸湿的定性滤纸上。径6 mm的菌饼,接种于含有100 mL PDB的将6PP用0.1%的吐温20稀释,药液的最终质量250 mL摇菌瓶中,于25 ℃、175 r/min恒温摇床浓度为0、0.1、0.5和1 μg/mL,喷洒到叶片表上摇培36 h后,处理组添加0.075 μg/mL的面,直到液体在叶片表面自由流动。24 h后,6PP,对照组添加等量的无菌水,继续培养36 h。将5 mm币斑病菌的菌饼 (菌株N8和N18) 放置在于10000 r/min下离心10 min,收集上清液,测定叶片表面(每片叶一个菌饼),用封口膜密封并放菌液pH值。每个菌株设3个重复,试验重复2次。置于光照培养箱(25 ℃、光照16 h、湿度80%)。2d后,十字交叉法测量叶片上病斑的直径。1.3.7 币斑病菌胞外多糖(EPS)含量测定 参照治疗作用测定:先用币斑病菌N8和N18接种文献方法测定[26]。取1 mL上清液(同1.3.5节)至叶片,接种方法、培养条件同预防作用,在接种5 mL无菌离心管中,加入3倍体积的无水乙醇,24 h后喷施最终质量浓度分别为0、0.5和2 μg/mL于10000 r/min下离心60 min,弃去无水乙醇,将6PP 药液。2 d后测量病变长度,并按照公式 (2)沉淀物在60 ℃真空下干燥60 min,之后溶解于计算防治效果( E )。每处理使用10片叶。8 mL无菌水中,水解后取2 mL溶液,加入1 mL 5%L1 L2苯酚溶液和5 mL浓硫酸,涡旋10 s后在25 ℃E=%=100(2)L1放置30 min,在490 nm处测量溶液的吸光值,并式中:L1为对照的病变长度,cm;L2为用葡萄糖标准曲线定量。以无菌水为对照。每处6PP处理的病变长度,cm。结果为10个重复的平理设3个重复,试验重复2次。均值 ± 标准差。1.3.8 丙二醛(MDA)含量测定 采用硫代巴比妥酸法1.3.11 6PP对草坪植株的防治效果 选择生长状[27]测定。按照1.3.5节方法处理并收集菌丝。况大致相同的健壮草坪植株,测定6PP对草坪币将菌丝与Tris-HCl缓冲液(0.05 mol/L,pH = 7.5)斑病的预防和治疗作用。按体积比 1 : 5研磨均质化,于15000 r/min下冷预防作用测定:分别用0.25、0.5和1 μg/mL冻离心20 min。以2 mL上清液和2 mL 0.5%硫代6PP进行整株喷雾处理,每株喷施2 mL,叶面均巴比妥酸为反应液,混匀后将试管放入沸水中煮匀挂满雾滴不流淌即可,诱导处理24 h后,将草10 min,冷却后以5000 r/min离心10 min。以坪币斑病菌N8和N18的1个菌饼 (10 mm) 分别0.5%硫代巴比妥酸溶液为对照组,分别于波长接种到经过6PP处理过的草坪上,并放置于光照532、600和450 nm处测量吸光度值,计算MDA培养箱(25 ℃、光照16 h、湿度80%),培养7 d含量。每处理设3个重复,试验重复2次。后,统计病情指数。以此接种点为中心调查周围1.3.9 币斑病菌对6PP的生理响应 按照1.3.5节的100枚叶片。以无菌水只接菌为对照,每个处方法收集菌丝,称取0.5 g菌丝于预冷的研钵中,理4株,重复3次。加入1 mL预冷0.05 mol/L磷酸缓冲液(pH = 7.8),治疗作用测定:先用币斑病菌N8和N18接种于12000 r/min下离心10 min,上清液用于过氧草坪植株,接种方法、培养条件同预防作用,在化物酶活性(POD)和超氧化物歧化酶(SOD)的测接种24 h后喷施最终浓度分别为0、0.5、1和2定。采用愈创木酚法[28]测定POD活性,以每分钟μg/mL 6PP 药液。7 d后测量病变长度,并计算防内A470变化0.01为1个过氧化物酶活性单位 (U)。治效果。按公式 (3) 计算病情指数 (DI)。采用氮蓝四唑 (NBT) 光还原法[29]测定SOD活(Nii)DI=100(3)性,以抑制NBT光化还原的50%为SOD酶的一(Nt9)个活力单位 (U)。式中:Ni为各级病株数;i为相应的级数值;1.3.10 6PP对草坪离体叶片币斑病的防治作用Nt为调查总株数。采用离体叶片法测定6PP对草坪币斑病的预防1.4统计分析和治疗作用[30]。通过SPSS16.0软件对试验数据进行统计分
4108农药学学报Vol. 25析,应用Duncan氏新复极差法进行差异显著性检了C.monteithiana3株菌株菌丝的生长,径向生长验,采用prism9.0软件 (GraphPad公司) 进行数据抑制率为60.72%、85.20%和97.71%,并完全抑处理和图形制作。制了C.jacksonii3株菌株菌丝的生长,径向生长抑制率为100%。6PP对C.jacksonii的抑菌效果较2结果与分析好,在较低质量浓度(0.05 μg/mL)时,对N8、73和112的抑制率分别达到80.40%、99.50%和2.1菌株鉴定97.77%,对C.monteithiana的N13、N14和根据系统发育关系,6株菌株划分为2个种,N18的抑制率分别是20.10%、19.80%和32.72%其中N8、112、73菌株为C.jacksonii,N18、N13、(图2-B)。6PP对C.jacksonii的EC50值显著低于N14菌株为C.monteithiana。供试菌株与币斑病菌C.monteithiana (P < 0.05),其中6PP对C.monteithiana模式菌株 (Type strain) 的同源性均达到了98%以3株菌株的平均EC50值为0.37 μg/mL,对C.jacksonii上(图1)。3株菌株的平均EC50值为0.04 μg/mL (表1)。2.26PP对币斑病菌抑制效果2.36PP对平板培养条件下币斑病菌菌丝形态的6PP对各菌株菌丝的生长具有抑制作用(图2-影响A),较高质量浓度的6PP ( > 0.2 μg/mL)有效抑制菌株N8和N18的对照组菌丝呈现出完整、XTH2_SH_SPClarireediajacksonii_CBS138618_TypestrainGQ924924_Beijing_ZoysiagrassGQ924923_Tianjin_Festucaarundinacea(Schreber)70C.jacksoniiHackel_GQ386985_shenzhen_seashorepaspalumN89711273GQ924926_Beijing_BentgrassGQ924925_Beijing_Zoysiagrass.72KF048091_D-C-1_Bermudagrass94Clarireediamonteithiana_RB19_TypestrainCAU1_SH_UnKnownN18100N1385N14C.Monteithiana100BH5_SH_SP86GU002301_Foshan_seashorepapalumKF048088_HD8-1_ZoysiagrassKF048089ML7-3Paspalumspp.XC14_HN_SP_IntronKF048090_HE-1_CarpetgrassSZ11_HN_SP_Intron98XC1_HN_SP_IntronXC5_HN_SP_Intron(Clarireediapaspali_Typestrain)XC6_HN_SP_Intron99Rutstroemiamaritima_CBS311137Clarireediahomoeocarpa_CBS31037_Typestrain96Clarireediabennettii_(asRutstroemiapaludosa)_CBS46473Clarireediabennettii_(asRutstroemiacalopus)_CBS854979698Clarireediabennettii_CBS30937_TypestrainRutstroemiabolaris_KL222100Rutstroemiafirma_CBS115860.010图1基于ITS-rDNA序列采用邻接法(NJ)构建的系统发育树Fig.1Phylogenetictreeconstructedusingneighbor-joiningmethodbasedonITSrDNAsequences
5No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果109ACK0.025μg/mL0.050μg/mL0.075μg/mL0.100μg/mL0.125μg/mL0.150μg/mL0.175μg/mL0.200μg/mL0.225μg/mL0.250μg/mL0.275μg/mLC.MonteithianaN13C.MonteithianaN14C.MonteithianaN181.5BC.jacksoniiN8N131.0N14C.jacksonii73N18N8Inhibitionrate/%0.573112C.jacksonii112抑制率000.10.20.36PP的质量浓度Concentrationof6PP/(μg/mL)图2不同浓度6PP对币斑病菌N13、N14、N18、N8、112和73的抑制作用Fig.2Theinhibitioneffectof6PPagainstClarireediaspp.strainsN13,N14,N18,N8,112and73表16PP对币斑病菌的EC50值Table1EC50valueof6PPtoClarireediastrains菌株毒力回归方程相关系数EC50/95% 置信限StrainToxicity regression equationCorrelation coefficient(μg/mL)95% CL/(μg/mL)C.monteithiana N13y = 0.85 + 0.48x0.9760.830.50 ± 1.16C.monteithiana N14y = 0.71 + 0.40x0.9240.150.11 ± 0.18C.monteithiana N18y = 0.71 + 0.45x0.9790.120.11 ± 0.13C.jacksonii N8y = 3.12 + 3.43x0.9010.030.02 ± 0.04C.jacksonii 73y = 0.28 + 0.31x0.8900.030.01 ± 0.04C.jacksonii 112y=0.27 + 0.28x0.9890.050.03 ± 0.06均匀的形态,菌丝表面光滑且能自然延展(图3-a,变化值均显著大于N18菌株(表2)。3-c),而在0.075 μg/mL的6PP处理下,N8和2.66PP对币斑病菌菌液pH值的影响N18显示出不同的形态变化。其中N8菌株,菌丝6PP处理币斑病菌36 h后,N8对照组菌液的顶部的分支增加,菌丝细胞膨大(图3-b),菌丝浆平均pH值为5.08,处理后的菌液pH平均值与对液凝结外渗,菌丝浆分布均匀;而N18菌丝变细照组菌液无显著差异(P > 0.05)。N18对照组菌液且聚集,隔膜变短(图3-d)。的平均pH值为4.84,处理后的菌液pH平均值为2.46PP对币斑病菌过氧化物积累的影响5.20,N18处理菌株的菌液pH变化显著高于对照DAB染色结果显示,菌株N8与N18的6PP组的菌液(P < 0.05) (图6)。处理组菌丝与DAB孵化时生成棕色产物(图4-a,2.76PP对币斑病菌MDA的影响4-c),而对照组没有发现色素沉积。与对照组相比,经过6PP处理的草坪币斑病2.56PP对菌丝体相对电导率的影响菌MDA含量均显著升高(P < 0.05)。N8对照组两种草坪币斑病菌株(N8和N18)菌丝的相对MDA含量为0.74 μmol/g,处理后为1.91 μmol/g。电导率随着时间的推移大致呈现先增加后逐渐稳N18对照组MDA含量为0.82 μmol/g,处理后为定的趋势。经6PP处理后,N8和N18菌丝的相1.64 μmol/g (图7)。对电导率高于对照组(图5),N8和N18对照组和2.86PP对EPS含量的影响处理组在180 min内相对电导率均显著上升(P 6110农药学学报Vol. 25CK+0.075μg/mLCK+0.075μg/mLabab400x400x400x400xcdcd400x400x注:a、b:分别为C.jacksonii N8对照组和处理组币斑病菌菌丝;c、d:分别为C.monteithiana N18对照组和处理组币400x400x斑病菌菌丝。Note: Mycelia of theC.jacksonii N8 control group(a) and the注:a、b:分别为C.jacksonii N8对照组和处理组币斑病菌菌丝;treatment group(b); Mycelia of C.monteithiana N18 controlc、d分别为C.monteithiana N18对照组和处理组币斑病菌菌丝。group(c) and treatment group(d).Note: Mycelia of theC.jacksonii N8 control group(a) and thetreatment group(b); Mycelia of C.monteithiana N18 control图36PP对C.jacksoniiN8和C.monteithianaN18group(c) and treatment group(d).菌丝形态的影响图4C.jacksoniiN8和C.monteithianaFig.3Effectof6PPonthemycelialmorphologyofN18的DAB染色结果图C.jacksoniiN8andC.monteithianaN18Fig.4DABstainingofC.jacksoniiN8andC.monteithianaN18100N8100N18N8+0.075μg/mL6PPN18+0.075μg/mL6PP9090808070706060Relativeconductivity/%Relativeconductivity/%50504040相对电导率30相对电导率30020406080100120140160180200020406080100120140160180200时间Time/min时间Time/min图56PP对C.jacksoniiN8和C.monteithianaN18菌丝体相对电导率的影响Fig.5Effectof6PPontherelativeconductivityofmyceliaofC.jacksoniiN8andC.monteithianaN18表2180min内C.jacksoniiN8和C.monteithianaN18EPS含量为5.20 mg/L,处理后为21.30 mg/L,增的相对电导率的变化长率为75.59%。6PP处理后N8和N18菌株的Table2ThechangesoftherelativeconductivityofC.jacksoniiN8andC.monteithianaN18within180minEPS含量均显著高于对照组 (P < 0.05),其中N18处理180 min 内相对电导率的变化的增长率高于N8 (图8)。TeatmentChange of relative conductivity within 180 minC.jacksonii N832.87 ± 1.10 b2.96PP对抗氧化酶活性的影响N8 + 0.075 μg/mL6PP45.21 ± 0.90 a6PP处理后N8和N18菌株SOD活性均显著C.monteithiana N1821.77 ± 1.23 BN18 + 0.075 μg/mL 6PP26.78 ± 1.56 A高于对照组(P < 0.05),N8对照组的SOD活性为注:不同字母表示0.05水平上的差异显著性。表中数据为3次独立重复试验的平均值 ± 标准误差。7.69 U/g,处理后为12.76 U/g,增长率为39.73%;Note: Different letters represent significant differences betweenN18对照组的活性为6.90 U/g,处理后为12.75 U/g,different treatments (P < 0.05). The data in the table are the mean ± SEfrom the three independent replicates.增长率为45.88%,即N18的增长率高于N8。 7No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果11166.0aa5.54apHpH5.0b24.504.0N8N8+0.075μg/mL6PPN18N18+0.075μg/mL6PP注:不同小写字母代表不同处理之间在 0.05 水平上差异显著。Note: Different lowercase letters represent significant differences between different treatments (P < 0.05).图66PP对C.jacksoniiN8和C.monteithianaN18菌液pH值的影响Fig.6Effectof6PPonbacterialfluidpHofC.jacksoniiN8andC.monteithianaN182.0a2.0a1.51.51.01.0bb丙二醛含量丙二醛含量MDA/(mmol/g)MDA/(mmol/g)0.50.500N8N8+0.075μg/mL6PPN18N18+0.075μg/mL6PP注: 不同小写字母代表不同处理之间在 0.05 水平上差异显著。Note: Different lowercase letters represent significant differences between different treatments (P < 0.05).图76PP对C.jacksoniiN8和C.monteithianaN18菌丝体MDA含量的影响Fig.7Effectof6PPonMDAofC.jacksoniiN8andC.monteithianaN18mycelium3030bb2020ContentofEPS/(mg/L)ContentofEPS/(mg/L)10a10a胞外多糖含量胞外多糖含量00N8N8+0.075mg/mL6PPN18N18+0.075mg/mL6PP注: 不同小写字母代表不同处理之间在 0.05 水平上差异显著。Note: Different lowercase letters represent significant differences between different treatments (P < 0.05).图86PP对C.jacksoniiN8和C.monteithianaN18菌丝体EPS含量的影响Fig.8Effectof6PPontheEPScontentofC.jacksoniiN8andC.monteithianaN18myceliumN8对照组的POD活性为1.31 U/(g·min),处理后差异并不显著(P > 0.05) (图9)。为2.40 U/(g·min),其增长率为45.42%,两者存在2.106PP对草坪离体叶片币斑病的预防和治疗显著性差异(P < 0.05)。N18对照组POD活性为离体条件下,以草坪币斑病菌株N8和N186.46 U/(g·min),处理后POD活性为6.90 U/g·min,作为侵染源。预防试验中,6PP对N8和N18引 8112农药学学报Vol. 25410a8a3a62PODactivity/(U/g)PODactivity/(U/g)4b活性活性1PODPOD200N8N8+0.075μg/mL6PPN18N18+0.075μg/mL6PP1515aa1010bbSODactivity/(U/g)SODactivity/(U/g)55活性活性SODSOD00N8N8+0.075μg/mL6PPN18N18+0.075μg/mL6PP注:不同小写字母代表不同处理之间在 0.05 水平上差异显著。Note: Different lowercase letters represent significant differences between different treatments (P < 0.05).图96PP对C.jacksoniiN8和C.monteithianaN18菌丝体SOD和POD的影响Fig.9Effectof6PPonSOD,andPODofC.jacksoniiN8andC.monteithianaN18mycelium起的币斑病均有良好的预防效果 (图10-A,表3)。(图10-B,表3)。在接种前喷施1 μg/mL的6PP,与喷施无菌水的2.116PP对草坪币斑病的预防和治疗对照组相比,预防效果分别达到92.40%和89.88%。盆栽条件下,以草坪币斑病菌株N8和N18治疗试验中,币斑病菌N8和N18接种24 h后,作为侵染源。6PP在不同剂量浓度下对草坪币斑2 μg/mL的6PP治疗效果分别为61.86%和53.53%病都表现出一定程度的保护和治疗作用效果。在CK0.1μg/mL0.5μg/mL1.0μg/mLCK0.5μg/mL2.0μg/mLABC.jacksoniiN8C.monteithianaN18注: A预防; B治疗。Note: A. Preventive effect; B. Curative effect.图106PP对匍匐翦股颖离体叶片币斑病的预防与治疗Fig.10Preventiveandcurativeeffectof6PPoncreepingbentgrassdetachedleavesagainstClarireediaspp. 9No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果113表36PP对匍匐翦股颖离体叶片币斑病C.jacksoniiN8和C.monteithianaN18的预防与治疗Table3Preventiveandcurativeeffectsof6PPagainstC.jacksoniiN8andC.monteithianaN18onleaves币斑病菌类型6PP 质量浓度保护作用6PP 质量浓度治疗作用Type ofClarireedia spp.Concentration/(μg/mL)Preventive effect/%Concentration/(μg/mL)Curative effect/%C.jacksonii N80—0—0.137.91 ± 6.90 c0.540.64 ± 8.30 b0.557.15 ± 10.30 b261.86 ± 4.20 a192.40 ± 3.30 a——C.monteithiana N180—0—0.127.55 ± 1.30 C0.531.14 ± 1.35 B0.554.28 ± 3.40 B253.53 ± 1.40 A189.88 ± 4.50 A——注:表中数据为10次独立重复试验的平均值 ± 标准误差。同列数据后不同字母表示经LSD法检验在0.05水平上差异显著。Note: The data in the table are the mean ± SE from the ten independent replicates. Different letters in the same column indicate significant differences at0.05 level by LSD test.接种前喷施1 μg/mL的6PP,与喷施无菌水的对后,2 μg/mL的6PP治疗效果分别为63.44%和照组相比,预防效果分别达到74.65%和69.77%。63.06% (表4)。在治疗试验中,币斑病菌N8和N18接种24 h表46PP对匍匐翦股颖植株币斑病C.jacksoniiN8和C.monteithianaN18的预防与治疗Table4Preventiveandcurativeeffectsof6PPagainstC.jacksoniiN8andC.monteithianaN18onplant预防作用治疗作用Preventive effect/%Curative effect/%币斑病菌类型6PP 质量浓度6PP 质量浓度Type ofClarireedia spp.Concentration/(μg/mL)Concentration/(μg/mL)病情指数防治效果病情指数防治效果Disease indexControl efficacy/%Disease indexControl efficacy/%C.jacksonii N8080.64 ± 9.81a—083.36 ± 11.01 a—0.2555.24 ± 5.17 b31.500.563.95 ± 6.90 b23.280.540.63 ± 4.86 c49.62148.65 ± 2.65 c41.63120.44 ± 5.05 d74.65230.47 ± 6.00 d63.44C.monteithiana N18091.31 ± 2.10 A—095.14 ± 1.51 A—0.2565.11 ± 4.90 B28.690.579.07 ± 4.05 B16.790.550.12 ± 4.88 C45.11162.48 ± 5.36 C34.32127.60 ± 4.64 D69.77235.17 ± 7.61 D63.06注:表中数据为3次独立重复试验的平均值 ± 标准误差。同列数据后不同字母表示经LSD法检验在0.05水平上差异显著。Note: The data in the table are the mean ± SE from the three independent replicates. Different letters in the same column indicate significant differences at0.05 level by LSD test.3结论与讨论草坪币斑病防治的多种杀菌剂相比,6PP具有更为高效的抑菌作用。离体条件下,6PP对草坪币3.16PP对草坪币斑病菌的抑菌活性和防治效果斑病菌的防治效果随着施用剂量的增加而增本研究中两种币斑病菌在6PP处理下EC50值加。盆栽条件下,6PP各处理的病情指数均低于对范围为0.03~0.83 μg/mL,均值为0.20 μg/mL。照组。Hu等[31]对24 个高尔夫球场和 1 个研究基地收集分离的358株币斑病菌的研究中发现,在丙环3.26PP破坏细胞膜的屏障作用,引发病菌的胁迫反应唑、异菌脲、啶酰菌胺处理下,币斑病菌平均EC50值分别为0.0307、0.2598 和2.067 μg/mL。同样,过氧化物的产生是细胞受到逆境胁迫的典型胡健等[32]在114株币斑病菌的研究中发现,病菌特征,本研究中两株币斑病菌MDA含量显著上在异菌脲处理下EC50值为0.0121~1.2644 μg/mL,升并出现大量DAB染色位点。MDA是膜脂过氧均值为 (0.5663 ± 0.2144) μg/mL。与目前广泛用于化产生的重要生物标志物,其浓度用于准确反映 10114农药学学报Vol. 25氧化应激诱导的细胞损伤,经6PP处理后,草坪6PP处理后N8和N18的SOD显著上升,其中N18币斑病菌产生大量的氧化自由基被DAB染色,这组SOD上升率高于N8,这种响应程度的差异也表明6PP处理使得病菌过氧化物积累,最终膜结很好解释了N18比N8更耐6PP。N8的POD活性构受损,菌丝浸泡液的相对电导率升高,pH值上显著上升,N18的POD活性却没有显著变化,这升也说明了这一问题。当微生物处在不利环境时,表明N8中的ROS相较于N18显著富集,激活了EPS可以启用一种特殊机制来提供保护,以维持大量的氧化清除反应,N8更容易受到6PP的胁迫细胞膜的完整性并延长其存活时间[33-34]。N8和影响[37]。Jin等[38]在人参锈腐病CylindrocarponN18的EPS上升说明菌丝受到胁迫,开始分泌destructans的研究中发现外源6PP会导致自噬作EPS来保护细胞膜和细胞壁[35],以抵御6PP的干用相关基因差异表达,而本研究中草坪币斑病菌扰。病原菌受到外界胁迫时,会分泌SOD将胁迫过氧化、细胞膜破损等现象也符合自噬作用的信号转化为过氧化氢以调控细胞内的抗性反应[36]。特征[39]。6PP处理后N8和N18的SOD活性显著上升,说整合本文研究数据和文献查阅,初步推测了明病菌的抵抗反应被触发,病菌受到胁迫。6PP对两种不同草坪币斑病菌的作用过程以及两3.36PP对两种不同草坪币斑病的胁迫强度种草坪币斑病菌对6PP的响应,两种菌对6PP的6PP对两种不同草坪币斑病具有不同的胁迫抵抗响应为6PP与胞内自噬小体结合过氧化从而强度。本研究中C.jacksonii对6PP抗性显著弱于导致活性氧的积累,在氧化应激下产生MDA,干C.monteithiana。C.jacksonii种的N8在6PP处理扰细胞代谢促使膜脂过氧化,破坏细胞膜的屏下菌丝变粗且顶端生长受到抑制,分支明显增多障。当草坪币斑病菌受到6PP影响,菌体过氧化且分支短小,其末端局部膨大肿胀。C.monteithiana物积累,菌体防御反应启动,表现在抗氧化酶升菌株的N18菌丝缢缩褶皱,黏连在一起,形成片高、物质外排,胞外多糖增加 (图11)。本研究仅层状结构,菌丝干瘪变细。6PP使得N8菌丝变测定了6PP对草坪币斑病菌的抑菌活性,还需进粗,导致菌体扩张,胞外物质大量内流,菌体代一步研究明确6PP抑制草坪币斑病菌的作用途径谢受到影响。而N18菌丝变细,与6PP的接触面和代谢通路,并开展田间药效试验,为防治草坪积降低,6PP的抑菌作用相对较弱。本研究中,病害提供理论依据。物质外排相对电导率ECMaterialdischarge胞外多糖EPS丙二醛MDA氧化应激Oxidativestress活性氧细胞皱缩细胞膨胀ReactiveoxygenspeciesCellcrumplingCellexpansion抗氧化酶AntioxidantenzymesSODPOD自噬小体AutophagosomeOO6-pentyl-2H-pyran-2-one注:黑色箭头代表6PP作用于草坪币斑病菌的过程;黄色箭头代表不敏感菌株C.monteithiana受到6PP胁迫作出的响应;蓝色箭头代表敏感菌株C.jacksonii受到6PP胁迫作出的响应。Note: The black arrow indicates the action pathway of 6PP on dollar spot, the yellow arrow indicates the response of insensitive strainC.monteithiana to 6PP stress and the blue arrow indicates the response of sensitiveC.jacksonii to 6PP stress.图116PP作用于两种币斑病菌的过程以及两种草坪币斑病菌对6PP的响应推测图Fig.11Theproposedmodelofthe6PPactionondollarspotandtheresponsesoftwopathogensto6PP 11No. 1刘曼等: 6-戊基-2H-吡喃-2-酮对草坪币斑病菌的抑菌活性及其对病害的防治效果115参考文献(References):functional dynamics of microbial community in the rhizosphere ofblack pepper (Pipernigrum L.)[J]. Braz J Microbiol, 2018, 49(3):[1]SALGADO-SALAZAR C, BEIRN L A, ISMAIEL A, et al.463-470).Clarireedia: a new fungal genus comprising four pathogenic species[15]LAZAZZARA V, VICELLI B, BUESCHL C, et al. Trichoderma spp.responsible for dollar spot disease of turfgrass[J]. Fungal Biol, 2018,volatile organic compounds protect grapevine plants by activating122(8): 761-773.defense-related processes against downy mildew[J]. Physiol Plant,[2]ZHANG H, DONG Y, ZHOU Y, et al. Clarireediahainanense: a new2021, 172(4): 1950-1965.species is associated with dollar spot of turfgrass in Hainan, China[J].[16]MANGANIELLO G, SACCO A, ERCOLANO M R, et al.Plant Dis, 2022, 106(3): 996-1002.Modulation of tomato response to Rhizoctoniasolani by Trichoderma[3]POPKO J J, SANG H, LEE J, et al. Resistance of Sclerotiniaharzianum and its secondary metabolite harzianic acid[J]. Fronthomoeocarpa field isolates to succinate dehydrogenase inhibitorMicrobiol, 2018, 9: 1966.fungicides[J]. Plant Dis, 2018, 102(12): 2625-2631.[17]JOSHI D, SINGH P, SINGH A K, et al. Antifungal potential of[4]TIAN Z P, WANG R Y, AMBROSE K V, et al. The Epichloëmetabolites from Trichoderma sp. against Colletotrichumfalcatumfestucae antifungal protein has activity against the plant pathogenwent causing red rot of sugarcane[J]. Sugar Tech, 2016, 18(5): 529-Sclerotiniahomoeocarpa, the causal agent of dollar spot disease[J].536.Sci Rep, 2017, 7(1): 1-15.[18]ANDRIAMIALISOA Z, GIRAUD M, LABIA R, et al. Chemical[5]AYNARDI B A, JIMÉNEZ-GASCO M M, UDDIN W. Effects ofsynthesis of 6-pentyl-2H-pyran-2-one: a natural antifungalisolates of Clarireediajacksonii and Clarireediamonteithiana onbiosynthesized by Trichoderma spp[J]. Chem Ecol, 2004, 20(1): 55-severity of dollar spot in turfgrasses by host type[J]. Eur J Plant59.Pathol, 2019, 155(3): 817-829.[19]张量, 张敬泽. 渐绿木霉抑菌物质的分离纯化及其对植物病原菌的[6]PUTMAN A I, JUNG G, KAMINSKI J E. Geographic distribution of抑制作用[J]. 中国农业科学, 2015, 48(5): 882-888.fungicide-insensitive Sclerotiniahomoeocarpa isolates from golfZHANG L, ZHANG J Z. Isolation and purification of activecourses in the northeastern United States[J]. Plant Dis, 2010, 94(2):compound from Trichodermaviridescens and its inhibitory activities186-195.against phytopathogens[J]. Sci Agric Sin, 2015, 48(5): 882-888. https:[7]RIOUX R A, SHULTZ J, GARCIA M, et al. Sclerotinia//kns.cnki.net/kcms/detail/11.1328.S.20150302.0251.006.html.homoeocarpa overwinters in turfgrass and is present in commercial[20]AHLUWALIA V, KUMAR J, RANA V S, et al. Comparativeseed[J]. PLoS One, 2014, 9(10): e110897.evaluation of two Trichodermaharzianum strains for major secondary[8]DENNIS C, WEBSTER J. Antagonistic properties of species-groupsmetabolite production and antifungal activity[J]. Nat Prod Res, 2015,of Trichoderma[J]. Trans Br Mycol Soc, 1971, 57(1): 41-IN4.29(10): 914-920.[9]NIETO-JACOBO M F, STEYAERT J M, SALAZAR-BADILLO F[21]HAMROUNI R, MOLINET J, MICHÉ L, et al. Production ofB, et al. Environmental growth conditions of Trichoderma spp. affectscoconut aroma in solid-state cultivation: screening and identificationindole acetic acid derivatives, volatile organic compounds, and plantof Trichoderma strains for 6-pentyl-alpha-pyrone and conidiagrowth promotion[J]. Front Plant Sci, 2017, 8: 102.production[J]. J Chem, 2019, 2019: 1-7.[10]RAJANI P, RAJASEKARAN C, VASANTHAKUMARI M M, et al.[22]HU J, ZHANG H W, DONG Y L, et al. Global distributions ofInhibition of plant pathogenic fungi by endophytic Trichoderma spp.Clarireedia species and their invitro sensitivity profiles tothrough mycoparasitism and volatile organic compounds[J].fungicides[J]. Agronomy, 2021, 11(10): 2036.Microbiol Res, 2021, 242: 126595.[23]MEI X Y, LIU Y X, HUANG H C, et al. Benzothiazole inhibits the[11]TROIAN R F, STEINDORFF A S, RAMADA M H S, et al.growth of Phytophthoracapsici through inducing apoptosis andMycoparasitism studies of Trichodermaharzianum againstsuppressing stress responses and metabolic detoxification[J]. PesticSclerotiniasclerotiorum: evaluation of antagonism and expression ofBiochem Physiol, 2019, 154: 7-16.cell wall-degrading enzymes genes[J]. Biotechnol Lett, 2014, 36(10):[24]MOJICA K, ELSEY D, COONEY M J. Quantitative analysis of2095-2101.biofilm EPS uronic acid content[J]. J Microbiol Methods, 2007,[12]TOGHUEO R M K, EKE P, ZABALGOGEAZCOA Í, et al.71(1): 61-65.Biocontrol and growth enhancement potential of two endophytic[25]DUAN Y B, GE C Y, LIU S M, et al. Effect of phenylpyrroleTrichoderma spp. from Terminaliacatappa against the causativefungicide fludioxonil on morphological and physiologicalagent of Common Bean Root Rot (Fusariumsolani)[J]. Biol Control,characteristics of Sclerotiniasclerotiorum[J]. Pestic Biochem Physiol,2016, 96: 8-20.2013, 106(1-2): 61-67.[13]VITTI A, PELLEGRINI E, NALI C, et al. Trichodermaharzianum T-[26]NASSER A, R BHAI S. Inhibition of Pythiummyriotylum by silicates22 induces systemic resistance in tomato infected by Cucumberand its impact on soft rot disease of ginger (Zingiberofficinale Rosc.)mosaicvirus[J]. Front Plant Sci, 2016, 7: 1520.[J]. Arch Phytopathol Plant Prot, 2021, 54(13-14): 702-721.[14]UMADEVI P, ANANDARAJ M, SRIVASTAV V, et al.[27]王琳, 郑胜礼, 吕淑敏, 等. 3-卤苯基芳香胺去甲斑蝥素衍生物对油Trichodermaharzianum MTCC 5179 impacts the population and菜菌核病菌的抑菌机理[J]. 农药学学报, 2021, 23(1): 107-116. 12116农药学学报Vol. 25WANG L, ZHENG S L, LV S M, et al. Inhibitory mechanism of[33]NWODO U U, GREEN E, OKOH A I. Bacterial exopolysaccharides:cantharidin derivatives against Sclerotiniasclerotiorum[J]. Chin Jfunctionality and prospects[J]. Int J Mol Sci, 2012, 13(11): 14002-Pestic Sci, 2021, 23(1): 107-116. https://kns.cnki.net/kcms/detail/14015.detail.aspx?FileName=NYXB202101016&DbName = CJFQ2021.[34]PAN F, HOU K, LI D D, et al. Exopolysaccharides from the fungal[28]刘尚可, 王越, 潘灿平, 等. 外源单宁酸对茶叶中农药胁迫作用的缓endophytic Fusarium sp. A14 isolated from Fritillariaunibracteata解效应[J]. 农药学学报, 2021, 23(6): 1150-1158.Hsiao et KC Hsia and their antioxidant and antiproliferationLIU S K, WANG Y, PAN C P, et al. Mitigating effect of exogenouseffects[J]. J Biosci Bioeng, 2019, 127(2): 231-240.tannic acid on the stress of pesticides in tea[J]. Chin J Pestic Sci,[35]GAO X Y, AVELLAN A, LAUGHTON S, et al. CuO nanoparticle2021, 23(6): 1150-1158. https://kns.cnki.net/kcms/detail/detail.aspx?dissolution and toxicity to wheat (Triticumaestivum) in rhizosphereFileName=NYXB202106013&DbName=CJFQ2021.soil[J]. Environ Sci Technol, 2018, 52(5): 2888-2897.[29]ZHANG J X, KIRKHAM M B. Drought-stress-induced changes in[36]CHUNG K R. Stress response and pathogenicity of the necrotrophicactivities of superoxide dismutase, catalase, and peroxidase in wheatfungal pathogen Alternariaalternata[J]. Scientifica, 2012, 2012:species[J]. Plant Cell Physiol, 1994, 35(5): 785-791.635431.[30]CHEN Y L, MAO X W, WANG J X, et al. Activity of the[37]SCHAFFER W M, BRONNIKOVA T V. Peroxidase-ROSdinitroaniline fungicide fluazinam against Bipolarismaydis[J]. Pesticinteractions[J]. Nonlinear Dyn, 2012, 68(3): 413-430.Biochem Physiol, 2018, 148: 8-15.[38]JIN X, GUO L W, JIN B H, et al. Inhibitory mechanism of 6-pentyl-[31]ZHANG H W, JIANG S, ZHAO Z Y, et al. Fungicide sensitivity of2H-pyran-2-one secreted by Trichodermaatroviride T2 againstClarireedia spp. isolates from golf courses in China[J]. Crop Prot,Cylindrocarpondestructans[J]. Pestic Biochem Physiol, 2020, 170:2021, 149: 105785.104683.[32]胡健, 杨静雅, 李婕, 等. 草坪草币斑病菌对甲基硫菌灵、异菌脲和[39]HOFIUS D, LI L, HAFRÉN A, et al. Autophagy as an emerging丙环唑的敏感性[J]. 农药学学报, 2017, 19(6): 694-700.arena for plant-pathogen interactions[J]. Curr Opin Plant Biol, 2017,HU J, YANG J Y, LI J, et al. Sensitivity of Sclerotiniahomoeocarpa38: 117-123.from turfgrass to thiophanate-methyl, iprodione and propiconazole[J].Chin J Pestic Sci, 2017, 19(6): 694-700. https://kns.cnki.net/kcms/det-(责任编辑: 张 莉)ail/detail.aspx?FileName=NYXB201706009&DbName=CJFQ2017.·书 讯·一部农药新剂型加工与应用领域的高水平专著! 《农药新剂型加工与应用》(第二版)陈福良 主编化学工业出版社出版(1)新增农药热点剂型,顺应新剂型发展趋势 本书顺应现阶段农药使用的发展方向以及新剂型快速发展的趋势,在第一版的基础上,删除了一些较老的农药剂型,增加了目前成为开发热点的农药新剂型。(2)延续第一版经典理论,契合实际应用需要 本书科学地将干悬浮剂从水分散粒剂中分离出来,将微米级的微囊剂与微球剂和毫米级的包膜颗粒剂拆分,独立成章,以适应实际应用需要。(3)响应“双减”战略,助力农药智能制造 本书响应国家“双减”战略,以期为提高农药新剂型制备水平和增强药效,更好地配合无人机施药等农药施药新技术,可大幅提高农药制剂加工水平的农药智能制造助力。◆书 号:978-7-122-42217-0◆定 价:128.00元 ◆出版时间:2023年1月 ◆开 本:B5开邮购地址:北京市东城区青年湖13号,化学工业出版社;邮编:100011;当当、京东、天猫网店均有销售,输入书号或书名搜索。也可联系出版社相关人员(电话:010-64519154/17610529386)。约稿出书请联系(电话: 010-64519457/13810683813)。(刘 军提供)
此文档下载收益归作者所有