四年级下册奥数全册教案

四年级下册奥数全册教案

ID:82998725

大小:2.66 MB

页数:40页

时间:2023-09-19

上传者:186****5381
四年级下册奥数全册教案_第1页
四年级下册奥数全册教案_第2页
四年级下册奥数全册教案_第3页
四年级下册奥数全册教案_第4页
四年级下册奥数全册教案_第5页
四年级下册奥数全册教案_第6页
四年级下册奥数全册教案_第7页
四年级下册奥数全册教案_第8页
四年级下册奥数全册教案_第9页
四年级下册奥数全册教案_第10页
资源描述:

《四年级下册奥数全册教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

四年级奥数下册班级:姓名:桂林泓文实验学校-1-

1四年级奥数下第一讲定义新运算第一讲定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。第一课时例1:对于任意数a,b,定义运算“*”:a*b=a×b-a-b。求12*4的值。分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。12*4=12×4-12-4=48-12-4=32。例题2:设a、b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。试计算:①5△6②6△5【思路导航】解这类题的关键是抓住定义的本质,这道题规定的运算本质是:运算符号前面的3倍减去运算符号后面的数的2倍。解:5△6=5×3-6×2=36△5=6×3-5×2=8显然,本例题定义和运算不满足交换律,计算时不能将△前后的数交换。例题3:对于两个数a、b,规定a☆b=a×b+a+b。试计算6☆2。【思路导航】这道题规定的运算本质是:将运算符号的前后两个数的积加上这两个数。解:6☆2=6×2+6+2=20疯狂操练1、设a、b都表示数,规定a○b=6×a-2×b。试计算3○4。2、设a、b都表示数,规定a#b=3×a+2×b。试计算①(5#6)#7②5#(6#7)3、有两个整数是A、B,A@B表示A与B的平均数。已知A@6=17,求A。4、对于两个数a、b,规定a☆b=a×b-(a+b)。试计算3☆5。5、对于两个数A与B,规定A※B=A×B÷2。试算6※4。-2-

2四年级奥数下第一讲定义新运算6、对于两个数a、b,规定a&b=a×b+a+b。试计算5&x=29,求x。7、对于两个数a、b,规定a☆b=a×b-a-b。试计算4☆3☆2。第二课时例题4:如果2△3=2+3+4,5△4=5+6+7+8,按此规则计算:3△5【思路导航】这道题规定的运算本质是:从运算符号前的数加起,每次加的数都比前面的数前一个数多1,加数的个数为运算符号后面的数。解:3△5=3+4+5+6+7=25例题5:【思路导航】从已知的三式来看,运算“”表示几个数相加,每个加数各数位上的数都是符号前面的那个数,而符号后面的数是几,就表示几个数之和,其中第1个数是1位数,第2个数是2位数,第3个数是3位数……按此规定,得35=3+33+333+3333+33333=37035。例题6:对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1)。已知x□6=27,求x。【思路导航】经过仔细分析,可以发现这道题规定运算的本质仍然是:从运算符号前面的数加起。每次加的数都比它相邻的前一个数多1,加数的个数为运算符号后面的数。解:原式=x+(x+1)+(x+2)+…+(x+5)=27即6x+15=27x=2练习1、如果52=5×6,23=2×3×4,按此规则计算:34。2、如果24=24÷(2+4),36=36÷(3+6),按此规则计算:84。-3-

3四年级奥数下第一讲定义新运算3、如果2△3=2+3+4,5△4=5+6+7+8,且1△x=15,求x。4、如果2□3=2+3+4=9,6□5=6+7+8+9+10=40。已知x□3=5973,求x。5、对于两个数a与b,规定a□b=a+(a+1)+(a+2)+…+(a+b-1),已知95□x=585,求x。6、如果1!=1,2!=1×2=2,3!=1×2×3=6,……按此规则计算5!第三课时例题7:如果1=1,2=4,3=9。依次规律,计算10=?【思路导航】经过仔细分析,可以发现这道题规定运算的本质是:a=a×a。例题8:有一个数学符号“”使下列算式成立:24=8,53=13,35=11,97=25。按此规则计算:73。【思路导航】经过仔细分析,可以发现这道题规定运算的本质是:ab=2a+b。依次规律,易求73。解:73=2×7+3=17.练习1、如果6※2=12,4※3=13,3※4=15,5※1=8。按此规律计算:8※4。2、已知23=972=1535=25。按此规律计算:164。3、已知5◇2=607◇3=8614◇4=4936,按此规律计算:1◇5。4、已知#1=1#2=8#3=27,按此规律计算#6=?-4-

4四年级奥数下第二讲图形计数第二讲图形计数我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时,就构成了复杂的几何图形,要想准确地计数这类图形中所包含的某一种基本图形的个数,就要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。第一课时例题1:数出下列图形中有多少条线段。方法一:“基本线段”有3条:AB,BC,CD;由两条基本线段连成的线段有2条:AC,BD;由三条基本线段连成的线段有1条:AD。因此图中共有线段有3+2+1=6(条)方法二:以A为左端点的线段为:AB,AC,AD以B为左端点的线段为:BC,BD以C为左端点的线段为:CD因此图中共有线段有3+2+1=6(条)经进一步观察,分析不难发现,算式中最大的数等于线段上的总的点数减1,线段的总数等于从1开始的若干个连续自然数的和。即:1+2+3+…+(总点数-1),这个规律也适用于其他一些图形。疯狂操练1数出下列图中有多少条线段。(1)(2)(3)(4)例题2:数一数图中有多少个锐角。【思路导航】数角的方法和数线段的方法类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可根据公式1+2+3+…+(总射线数-1)求得:1+2+3+4=10(个)-5-

5四年级奥数下第二讲图形计数所以,图中有10个锐角。疯狂操练2下列各图中分别有多少个锐角。(1)(2)(3)思考题:(1)(2)将下面的角内添上一些线段,使得角的个数为10个。第二课时例题3:数一数下图中有多少个三角形。【思路导航】图中AD边上的每一条线段与顶点O构成一个三角形,也就是说,AD边上有几条线段,有几条线段,就构成了几个三角形,因为AD上有4个点,共有1+2+3=6(条)线段,所以图中有6个三角形。答:图中共有6个三角形。疯狂练习3(1)(2)(3)例题4:数一数图中有多少个三角形。【思路导航】与前一例题相比,图中多了一条线段A'D',因此,三角形的个数应该是AD和A'D'上面-6-

6四年级奥数下第二讲图形计数的线段与点O所围成的三角形个数的和。显然,以AD上的线段为底边的三角形也是1+2+3=6(个)三角形。(1+2+3)×2=12(个)答:图中共有12个三角形。疯狂练习4数一数下面各图中各有多少个三角形。(1)(2)(3)思考题:数出有多少个三角形第三课时课前热身:数一数下图中有多少个长方形。【思路导航】数长方形与数线段的方法类似。可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6(条),所以,图中有1+2+3=6(个)故图中有6个长方形。即时热身:例题1:数一数图中有多少个长方形?-7-

7四年级奥数下第二讲图形计数【思路导航】图中的AB边上有线段1+2+3=6(条),把AB边上的每一条线段作为长,AD边上的每一条作为宽,每一个长配一个宽,就组成了一个长方形,所以图中共有6×3=18(个)答:图中有18个长方形。数长方形可以用下面的公式:长边上的线段×宽边上的线段=长方形的个数疯狂操练1数一数,下面各图中分别有几个长方形?例题2:数一数下面有多少个正方形?(每个小方格都是边长为1的正方形)【思路导航】图中边长为1个长度单位的正方形有3×3=9(个),边长为2个长度单位的正方形有2×2=4(个),边长为3个长度单位的正方形有1×1=1(个)。所以图中的正方形总数为:1×1+2×2+3×3=1+4+9=14(个)。答:图中有14个正方形。经进一步分析可以发现,由相同的n×n个小方格组成的n行n列的正方形其中所含的正方形总数为:1×1+2×2+3×3+……+n×n疯狂练习2数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)第四课时例题3:数一数下图中有多少个正方形(其中每个小方格都是边长为1个单位的正方形)-8-

8四年级奥数下第二讲图形计数【思路导航】边长是1个长度单位的正方形有3×2=6(个),边长是2个单位的正方形有2×1=2个,所以,图中正方形的总数为:6+2=8(个)。答:图中有8个正方形。疯狂练习3(1)数一数下列各图中分别有多少个正方形。(2)下图中有多少个长方形,其中有多少个是正方形?(说明:正方形也算长方形)第五课时综合例题4:从桂林到南宁的某次快车中途停靠6个大站,铁路局要为这次快车准备的车票中有多少种不同的票价?【思路导航】这道题是数线段的方法在实际生活中的的应用,连同桂林、南宁在内,这条铁路上共有8个站,共有1+2+3+5+6+7=28(条)线段,因此要准备28种不同的车票。(注意:同一趟车两个车站往返车票一样)。疯狂练习4(1)从上海到武汉的航运线上,有9个停靠码头,航运公司要准备多少种不同的船票?(2)从上海至青岛的某次直快列车,中途停靠6个大站,这次列车有几种不同的票价?(3)从成都到南京的快车,中途要停靠9个站,有几种不同的票价?例题5:求下列图中线段长度的总和。(单位:厘米)【思路导航】要求图中的线段的长的总和,可以这样计算:AB+AC+AD+AE+BC+BD+BE+CD+CE+DE=1+(1+4)+(1+4+2)+(1+4+2+3)+4+(4+2)+(4+2+3)+2+(2+3)+3=52(厘米)-9-

9四年级奥数下第三讲归一问题从上面的计算中可以发现这样一个规律,算式中长1厘米的基本线段(我们把不能再划分的线段称为基本线段)出现了4次,长4厘米的线段出现了(3×2)次,长2厘米的线段出现了(2×3)次,长3厘米的线段出现了(1×4)次,所以,各线段长度的总和还可以这样算:1×4+4×(3×2)+2×(2×3)+3×(1×4)=1×(5-1)+4×(5-2)×2+2×(5-3)×3+3×(5-4)×4+(5-4)×4=52(厘米)答:所有的线段总和是52厘米。a,a,a,…,a上式中的5是线段上的5个端点,如果设线段上的点数为n,基本线段分别为123(n−1)。以上各线段的长的总和为L,那么L=a×(n−1)×1+a×(n−2)×2+a×(n−3)×3+…+a×1×(n−1)。123(n−1)疯狂练习5(1)求下图中所有线段的总和。(单位:米)(2)求下图中所有线段的总和。(单位:厘米)(3)一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?第三讲归一问题第一课时例题1王师傅2小时加工了62个零件,照这样计算,他每天工作8小时可以加工多少个零件?如果要加工372个零件需要几个小时?解:王师傅1小时加工零件:62÷2=31(个)8小时加工零件:31×8=248(个)加工372个零件:372÷31=12(小时)答:他每天8小时可以加工248个零件。如果要加工372个零件需要12个小时。练习-10-

10四年级奥数下第三讲归一问题1、一个人骑自行车4小时行44千米,照这样的速度,他骑自行车从家去55千米的姑姑家需要多少小时?2、一个装订小组3小时装订1800本书,照这样计算,装订4800本书需要多少小时?例题2一个粮食加工厂加工大米5000千克,3小时加工了1500千克,照这样计算,加工完剩下的大米还要几小时?解:每小时加工:1500÷3=500(千克)还剩下:5000-1500=3500(千克)还要的时间:3500÷500=7(小时)答:加工完剩下的大米还要几小时。练习1、一个车间加工48个零件,4小时加工了24个,照这样计算,加工完剩下的零件还要多少小时?2、一个米粉厂加工面粉2000千克,3小时加工了1200千克,照这样计算,加工完所有的面粉需要多少个小时?提高某人用25秒将一根木料锯成6段,照这样计算,把9根同样的木料每根锯成9段需要多少分钟?-11-

11四年级奥数下第三讲归一问题课堂小结总数÷份数=一份数一份数×份数=总数总数÷一份数=份数第二课时例题3加工一批零件,8人3天可以完成96个,照这样计算,15人8天可以加工零件多少个?解:1人1天做:96÷8÷3=12÷3=4(个)15人8天做:4×15×8=60×8=480(个)答:15人8天可以加工零件480个。田老师温馨提示:先归一,即求出每人每天做几个,然后再解决问题。练习1、4个工人5小时生产机器零件100个,照这样计算,6个工人8小时生产零件多少个?2、王家村农民12人7天植树1680棵,照这样计算,28人要植树5600棵需要多少天?例题4:东新饲养场原来喂了20匹马,7天用精饲料280千克,照这样计算,增加5匹马,450千克精饲料能喂几天?解:(两次归一)每匹马每天用精饲料:280÷20÷7=14÷7=2(千克)现在有马:20+5=25(匹)现在每天用精饲料:25×2=50(千克)450千克需要的天数:450÷50=9(天)答:450千克精饲料能喂几天。练习1、4台吊车7小时卸煤1428吨,如果增加5台同样的吊车,工作8小时,可以卸煤多少吨?-12-

12四年级奥数下第三讲归一问题2、苏兴织布机用了3台同样的织布机4小时织布1140米,现在增加到5台织布机,织布1900米需要多少个小时?提高:三个和尚吃三个馒头用3分钟,照这样计算,九个和尚吃9个馒头,要多少分钟?第三课时例题5:加工一批零件,9个工人20天可以完成,如果增加6个工人,每个工人的工作效率相同,可以提前几天完成任务?解:假设每个工人每天完成一件,则9个工人20天做:1×9×20=180(件)现在有工人9+6=15(人),做180件需要的天数是:180÷15=12(天)可以提前天数20-12=8(天)答:可以提前8天完成任务。田老师温馨提示:不明确每人每天做多少个零件的时候,先假设每人每天做1个。1、煤厂计划24天完成一批供煤任务,每天应生产45吨煤。改进技术后,每天比原计划多生产15吨,这样提前几天完成任务?2、一件零件,5人每天工作8小时用6天可以完成,照这样计算,增加5人每天少工作2小时,提前几天完成任务?3、某服装厂接受了一批服装的加工任务,25个工人12天可以完成,工作6天后,又增加了5个工人,还要几天才能完成任务?例题6:一条长1200米的水渠计划30人用20天的时间做完,为了提前8天修完,照这样的速度,需要增加多少人?解:每人每天修:1200÷30÷20现在需要修的天数:20-8=12(天)=40÷20一天修的长度:1200÷12=100(米)=2(米)现在的人数:100÷2=50(人)要增加的人:50-30=20(人)答:需要增加20人。-13-

13四年级奥数下第三讲归一问题练习1、某工厂生产一批农具,25个工人用28天完成,因生产需要提前8天完成,应增加多少工人?2、3台织布机4小时能织布144米,照这样计算,要在5小时内再多织336米,需增加同样的织布机多少台?提高某车间原计划15人6天生产1800个零件,在开工时,又增加了任务,在每人的工作效率不变的情况下,需18人做8天才能完成,增加了多少个零件的任务?第四课时例题7:甲、乙、丙三人买了8个面包,平分着吃,甲付了5个面包的钱,乙付了3个面包的钱,丙没有付钱,等吃完后一算,丙应该付出3元2角。问甲、乙应各收回多少钱?解:由于每个人吃的份量一样多,所以每人付的钱都应该是3元2角,则三人吃的面包钱总和为3元2角×3=9元6角。即8个面包练习1、甲、乙、丙外出旅游,甲带了5个蛋糕,乙带了3个蛋糕,丙没带,中午3人平分吃蛋糕,吃完后,丙拿出1元6角,那么甲、乙各应收回多少钱?例题8如果买6个书包和3盒水彩笔需要294元,而如果买2个书包和3盒水彩笔只需154元,求一个书包和一盒水彩笔各多少钱?练习1、小明买了4本练习本盒3支圆珠笔,一共用去10元钱,小红买了4本练习本和5支圆珠笔,共用去了14元钱。求一本练习本和一支圆珠笔各多少钱?-14-

14四年级奥数下第四讲盈亏问题第四讲盈亏问题第一课时教学内容:一盈一亏类型的盈亏问题例1:幼儿园把一些糖果分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。幼儿园有多少个小朋友?一共有多少块糖果?解:第一种分配方案:每人2个,多20个……盈第二种分配方案:每人3个,少40个……亏分配对象:小朋友被分配的是(物品):糖果根据一盈一亏的公式:(盈+亏)÷两次分配之差=分配对象数人数:(20+40)÷(3-2)=60(人)糖果:60×2+20=140(块)或60×3-40=140(块)答:幼儿园一共有60个小朋友,一共有140块糖果。课堂练习1、一个植树小组植树。如果每人载5棵,还剩14棵;如果每人载7棵,就缺4棵。这个植树小组多少人?共植树多少棵?2、学校组织同学们去划船,如果每船坐3个人,就多出23人,如果每船坐5个人,则空出了3条船,问有多少同学,多少只船?3、有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果减少一条船,正好每条船坐9人。问:这个班一共有多少个同学?4、用绳子测一口井的深度,绳子对折时,超出井口5米;如果绳子四折,离井口还差2米,求井深和绳长。-15-

15四年级奥数下第四讲盈亏问题5、小强从家里去学校,如果每分钟走50米,就要迟到3分钟,如果每分钟走60米,可以提前2分钟到校,小强家离学校多远?课后作业:1、大队辅导员请即将入队的同学每3人一排,发现多了20人,他又将这些学生改成5人一排,人数正好不多不少,入队的同学有多少人?2、用一根绳子测量桥的高对,如果绳子两折时,多6米;如果绳子3折时,差2米,求绳子长和桥高分别是多少米?3、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每船坐5人;如果减少1条船,正好每船坐7人,这个班有多少人?第二课时教学内容:两盈、两亏、一盈一足、一亏一足类型的盈亏问题例2:少先队员去植树,如果每人种3棵,还有12棵没有种,如果每人种4棵,还有5棵没有种,问有多少个少先队员参加植树,一共要种多少树苗?解:第一种分配方案:每人3棵,多12棵……盈第二种分配方案:每人4棵,多5棵……盈分配对象:少先队员物品:树根据两盈公式:(大盈-小盈)÷两次分配差=分配对象数人数:(12-5)÷(4-3)=7(个)树:7×3+12=33(棵)或7×4+5=33(棵)答:有7个少先队员参加植树,一共要种33棵树苗。练习二1、田老师将一批钢笔笔奖给五(1)班本次月考成绩平均分上90分的同学。如果每人奖5支,则缺8支;如果每人奖7支,则缺32支。问四(1)班有多少人可以得李老师的奖励?李老师一共准备了多少支钢笔?-16-

16四年级奥数下第四讲盈亏问题2、廖老师给美术兴趣小组的同学分若干支水彩笔。如果每人5支则多12支;如果每人分8支还多3支。请问每人分多少支刚好把水彩笔分完?3、学校安排四(1)学生到多媒体教室听安全教育讲座,如果每排坐6人,则空出6排;如果每排坐9人,则空出8排。四(1)班共有多少人?多媒体教室共有多少排座位?例3唐老师将棒棒糖分给A组同学,如果每人分2根还多7根,如果每人分3根正好分完,问A组有多少个学生,李老师有多少根棒棒糖?解:第一种分配方案:每人2根,多7根……盈第二种分配方案:每人3根,正好分完(0)……足参加分配的量:同学被分配的量:棒棒糖根据一盈一尽公式:盈÷两次分配之差=参加分配的量学生数:7÷(3-2)=7(个)糖:7×2+7=21(根)或7×3=21(根)……此种求法更简单答:A组共有7个同学,李老师有21根棒棒糖。练习1、生活老师为五年级全体女生分宿舍,如果每个房间住12人,房间刚刚好,如果每间房住16人,则有3个房间空着,有多少个房间?有多少名女生?2、学校给新生安排宿舍,若8人一间则多23人,若10人一间则多3人,问有新生多少人?宿舍多少间?3、老师将一些练习本分给班上的同学,如果每人发10本,则有两个学生没分到,如果每人分8个,则正好发完,有多少个学生?多少个练习本?4、有一个班的同学去划船,他们算了一下,如果每条船坐8人,多了3条船,如果每条船坐5人,正好坐完,有多少名同学?多少条船-17-

17四年级奥数下第四讲盈亏问题第三课时教学内容:含有一级和两级转换类型的盈亏问题例4:动物园为猴山的猴子买来桃,这些桃如果每只猴分5个,还剩32个;如果其中10只小猴分4个,其余的猴分8个,就恰好分完。问:猴山有猴子多少只?共买来多少个桃?分析与讲解:根据观察对应数量关系的变化寻求答案的解题思路,首先需要把条件“如果其中10只小猴分4个,其余的猴分8个,就恰好分完。”转化成:如果每只猴都分8个,就少了(8-4)×10=40(个),然后按盈亏问题来求解。解:第一种分配方案:每只猴子分5个,就多32个……盈第二种分配方案:每只猴子都分8个,就缺(8-4)×10=40(个)…亏分配对象:猴子物品:桃猴子:(40+32)÷(8-5)=24(只)桃子:5×24+32=152(个)答:猴山有猴24只,共买来桃子152个。练习四1、老师给幼儿园的小朋友分苹果,如果每位小朋友分2个,还多30个;如果其中的12位小朋友每人分3个,剩下的每人分4个,正好分完。一共有多少位小朋友?有多少个苹果?2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中2人各挖8个,其余的人各挖4个树坑,就恰好挖完所有的树坑。少先队员一共挖多少树坑?3、在一次大扫除中,老师分配若干人擦玻璃。如果其中2人各擦4块,其余每人擦5块,则余22块;如果每人擦7块,正好擦完。求擦玻璃的人数和玻璃的块数。4、小红买来一筐橘子分给全家人。如果其中2人每人分4个,其余每人分2个,则多出4个;如果其中1人分6个,其余每人分4个,则缺12个。小红买来多少个橘子?小红家共有多少人?5、农民种树,其中有3人分得树苗各4棵,其余的每人分得3棵,这样最后余下树苗11棵;如果1人先分得3棵,其余的每人分得5棵,则树苗恰好分尽。求人数和树苗的总数。-18-

18四年级奥数下第五讲鸡兔同笼问题(假设法解题)第五讲鸡兔同笼问题第一课时教学内容:已知总头数、脚数之和例题1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只,问鸡、兔各有多少只?解:假设35只全是鸡,则共有脚35×2=70(只)比实际少94-70=24(只)我们把每只兔看做鸡少算4-2=2(只)脚则兔子只数:24÷2=12(只)鸡数:35-12=23(只)验算:鸡的脚数:23×2=46(只),兔的脚数:12×4=48(只)脚的总和:46+48=94(只)正确答:鸡有23只,兔有12只。田老师特别说明:也可以假设35只全部是兔,自己试一试。小结论:1、假设全是鸡:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)2、假设全是兔:鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)随堂练习1、鸡与兔共30只,共有脚70只,鸡与兔各有多少只?2、鸡与兔共有20只,共有脚50只,鸡和兔各有多少只?3、面值是2元、5元的人民币共27张,合计99元,面值是2元、5元的人民币各有多少张?4、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人,问大船和小船各几只?-19-

19四年级奥数下第五讲鸡兔同笼问题(假设法解题)课后练习1、龟、鹤共有100只脚,35个头,龟、鹤各有多少只?2、孙佳有2分、5分的硬币共40枚,一共是1元7角,两种硬币各有多少枚?3、44名学生去划船,一共乘坐10只船,其中大船坐6人,小船坐4人,问大船和小船各几只?第二课时教学内容:已知总头数、脚数之差例2鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只方法一:假设100只全是兔则有兔脚100×4=400(只)假设中的兔脚,此时鸡脚为0,少400只脚400-28=372(只)实际鸡脚比兔脚少28只,相差372只脚思考:减少这372只脚的差距????让一些兔子回归“本来面目”回到鸡的模样2+4=6一只兔子变成一只鸡,鸡脚增加2条,兔脚减少4条,两者差距缩小6只,我们把这样的一个过程称为“交换”372÷6=62需要变换62次,说明有鸡62只100-62=38只即为兔子数方法二:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔的只数是(100-28÷4)÷(2+1)+7=38(只).解法三、也可以采用减去28只兔脚,自己不妨试下随堂练习:1、鸡兔共45只,鸡脚比兔脚多60只,鸡兔各几只?-20-

20四年级奥数下第五讲鸡兔同笼问题(假设法解题)2、鸡兔共100只,鸡脚比兔脚多80只,鸡兔各几只?3、鸡兔共200只,鸡的脚比兔的脚少56只,则鸡兔各几只?第三课时教学内容:头数之差,脚数之和例3鸡兔共笼,鸡比兔多30只,共有脚168只,鸡兔各几只?方法一:假设法假设全是鸡,共有168÷2=84(只),这时兔为0只,鸡比兔多84只。而题是鸡比兔多30只,相差54只,所以要换。为保持总脚数不变,必须用两只鸡换一只兔,换一次,鸡少两只兔多一只,相差三只,共换:54÷(2+1)=18次,即兔为18只,鸡就是48只方法二:“减”因为鸡比免多30只,如果把30只鸡拿走,那总脚数就变成:168-60=108只,这时鸡兔一样多,都是:108÷(2+4)=18只,原来鸡就有48只方法三:补”因为兔比鸡少30只,如果补上30只兔,这时鸡兔数目一样多,而总脚数就变成了:168+30*4=288只,288÷(2+4)=48只,48-30=18只。练习1、鸡兔同笼,鸡比兔多19只,共有腿230,鸡兔各几只?2、杯子和热水瓶共170元,单价分别为2元和15元,杯子比热水瓶多34只,它们各多少只3、买甲、乙两种戏票,甲票每张4元,乙票每张3元,乙票比甲票多买了9张,共用去97元,两种票各几张?-21-

21四年级奥数下第五讲鸡兔同笼问题(假设法解题)4、100个和尚140个馍,大和尚1人分3个,小和尚1人1个,问大小和尚各几人?5、有龟和鹤两种动物,其中鹤比龟多26只,共有脚178只,则龟和鹤各有多少只?6、现有大小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克,问,大小瓶各有多少千克?第四课时教学内容:杂题例题4:猴子妈妈摘桃子,晴天每天可以摘20个,雨天每天只能摘12个,它一连几天摘了112个桃子,平均每天14个。这几天当中有几天是雨天?分析与讲解:题目中没有直接给出总共的天数,但是可以求:天数=总数÷平均数=112÷14=8(天)假设这8天都是晴天,那么摘的桃子数是20×8=160(个)。比实际的多160-112=48(个)。晴天比雨天每天多摘20-12=8(个),有多少天可以摘48个?48÷8=6(天)——雨天。假设全是雨天,该怎样解答?课堂练习1、一辆汽车运矿石,晴天每天可运14次,雨天每天只能运3次。这辆汽车运了17天,共运了139次。这些天有多少天下雨?2、某中学利用暑假进行军训活动,晴天每日行35里,雨天每日行22里,13天共行403里,这期间雨天有多少天?-22-

22四年级奥数下第五讲鸡兔同笼问题(假设法解题)例题5:一批水泥,用小车装载,要用45辆,用大车装载,只要36辆,每辆大车比小车多装4吨,这批水泥有多少吨?分析与讲解:假设用36辆小车运,则多剩下4×36=144(吨),只需要45-36=9(辆)小车来运,这样可以求出每辆小车的装载量144÷9=16(吨),所以这批水泥有16×45=720(吨)。想一想:如果只用45辆大车来运,该怎样解答?及时练习1、一批货物用大卡车装运16辆,如果用小卡车装要48辆,已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次,每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3、一批货物,用小车装载,要用15辆,用大车装载,只要12辆,每辆大车比小车多装10吨,这批货物有多少吨?4、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?第五课时教学内容:杂题例题6:一次数学竞赛共有20道题,做对一题得5分,做错一题扣3分,刘冬考了52分,求刘冬做对几题?分析与讲解:假设20道题全部做对,那么刘冬就得了100分,比实际多了100-52=48分,每题相差了5+3=8分,做错几题会相差48分?48÷8=6(道),刘冬做对20-6=14(道)题。-23-

23四年级奥数下第五讲鸡兔同笼问题(假设法解题)练习1、“未来杯”数学竞赛共有20道题,评分标准是做对一题得5分,做错或没做一题倒扣2分。李宏得了72分,她做对了几道题?2、小红参加数学竞赛,共做25道题,得78分,已知做对一题得4分,不做得0分,错一题扣1分,问小红做对几道题?例题7:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张?分析与讲解:因为“40元和50元的张数相等”,所以可把40元和50元的门票都看作45元的门票。假设这200张门票都是45元,应付45×200=9000(元),这样就比实际少付了9000-7800=1200(元)。这是因为把30元的门票都看成了45元的门票,因此30元的门票有1200÷(45-30)=80(张)。由此可以求出40元和50元的门票张数各是(200-80)÷2=60(张)。练习1、某场羽毛球比赛售出40元、30元、50元的门票共400张,收入15600元,其中40元和50元的张数相等。每种票各售出多少张?2、老师买了每支价格分别是8元、5元和3元的三种签字笔共52支,共付了256元,买5元、3元的签字笔数量相等。问:三种签字笔各买了多少支?-24-

24四年级奥数下第六讲相遇问题第六讲相遇问题第一课时田老师建议:在学习本章时一定要主动画图。善于画图。例1、小强和小明两人同时从家中出发相向而行,小强每分钟走50米,小明每分钟走70米,经过20分钟两人相遇。问(1)他们两家相距多少米?(2)3分钟时,他们还相距多少米?(3)30分钟时,他们相距多少米?解:(1)两家的距离=小强走的路程+小明走的总路程=50×20+70×20=1000+1400=2400(米)或者(50+70)×20=120×20=2400(米)(2)三分钟走了:2400-(50+70)×3=2400-120×3=2040(米)(3)(50+70)×30-2400=120×30-2400=1200(米)答:他们两家相距2400米;3分钟时,他们还相距2040米;30分钟时,他们相距1200米。小结:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间练习1、甲、乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两艘轮船途中相遇,两地间的水路长多少千米?2、一个圆形操场跑道的周长是500米,两个学生同时同地相背而行,甲每分钟走66米,乙每分钟走59米,经过几分钟才能相遇?3、一辆汽车和一辆摩托车同时从相距860千米的两地出发,相向而行,汽车每小时行45千米,摩托车每小时行70千米,6小时后两车相距多少千米?4、一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?-25-

25四年级奥数下第六讲相遇问题动脑筋东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人的速度各是多少?作业1、两艘舰艇同时从甲港口出发相背而行,其中一艘每小时行52千米,另一艘每小时行42千米。经过16小时,他们相距多少千米?2、小明和小红家相距600米,两人同时从家相向出发,小明每分钟走60米,小红每分钟走40米,4分钟后两人相距多少米?几分钟后两人相遇?3、汽车和货车同时从相距506千米的两地相向开出,汽车每小时行52千米,货车每小时行40千米,那么几小时后两车相距138千米?第二课时例2:甲、乙两地相距300米,小明和小军各从甲、乙两地相背而行,7分钟后相距860米。小明每分钟走37米,小军每分钟走多少米?解:两人7分钟共走的路程:860-300=560(米)则两人一分钟共走的路程(即为速度和):560÷7=80(米)小军的速度:80-37=43(米/分)答:小军每分钟走80米。练习1、小明和小勇家相距1400米,一个在学校东边,一个在学校西边。两人到学校都要走8分钟,已知小明每分钟走75米,那么小勇每分钟走多少米?2、甲、乙两港口相距3000千米,两艘舰艇同时从甲、乙港口出发,相背而行,10小时后两舰艇相距4020千米。其中一艘每小时行52千米,另一艘每小时行多少千米?-26-

26四年级奥数下第六讲相遇问题例3:甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。甲车几小时后与乙车相遇?解:乙两小时走的路程:41×2=82(米)甲乙的相遇路程:770-82=688(米)甲乙相遇时间:688÷(41+45)=688÷86=8(小时)答:甲车8小时后与乙车相遇。练习1、甲、乙二人从相距36千米的两地相向而行。甲的速度为每小时3千米,乙的速度是每小时4千米,若乙先出发2小时,甲才出发,则甲经过几小时后与乙相遇?2、甲、乙两地相距340千米,客车从甲地开往乙地,每小时行40千米,1小时后,货车从乙地开往甲地,每小时行60千米。货车出发几小时后与客车相遇?3、甲、乙两地相距180米,红红和芳芳分别从甲、乙两地同时相向而行,2分钟后相距20米,红红每分钟走45米,问芳芳每分钟走多少米?4、甲、乙两船分别从550千米的A、B两港相向开出,甲船每小时行30千米,出发2小时后,乙船才从B港开出,速度为每小时40千米,求乙船开出后几小时与甲船相遇?第三课时例4:客车和货车同时从A、B两地相向开出,客车每小时行60千米,货车每小时行80千米,两车在距中点30千米处相遇,求A、B两地相距多少千米?解:货车比客车多走:30×2=60(千米)两车相遇时间:60÷(80-60)=60÷20=3(小时)AB距离:(80+60)×3=140×3=420(千米)答:A、B两地相距420千米。-27-

27四年级奥数下第六讲相遇问题练习1、甲、乙两辆车同时从两地出发,相向而行。甲汽车每小时行50千米,乙汽车每小时行55千米。两车在距中点15千米处相遇。求两地之间的路程是多少千米?2、下午放学时,小红从学校回家,每分钟走100米,同时妈妈也从家中出发到学校去接小红,每分钟走120米,两人在距中点50米的地方相遇。求小红家到学校之间的路程。第四课时例5:两地相距900米,甲、乙二人同时、同地向同一个方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?解:甲乙两人共走了900×2=1800(米)每小时速度和:100+80=180(米)相遇时间:1800÷180=10(分钟)答:从出发到相遇共经过10分钟。练习、两地相距1900米,甲、乙二人同时同地向同一个方向走,甲每分钟走90米,乙每分钟走100米,当乙到达目标后,立即返回与甲相遇,从出发到相遇共经过多少分钟?2、兄妹二人同时离家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至学校180米处与妹妹相遇,他们家离学校多远?第五课时例6:王欣和陆亮两人从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米,如果一只狗与王欣同时同向而行,每分钟500米,遇到陆亮后,立即回头向王欣跑去,遇到王欣再向陆亮跑去。这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?解:狗走的时间与人一样,人的相遇时间为:2000÷(110+90)=2000÷200=10(分钟)狗跑的路程:500×10=5000(米)答:狗共行了5000米。练习1、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米,一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折回去向甲车飞去。这样一直飞下去,燕子飞了多少千米,两车才能相遇?-28-

28四年级奥数下第六讲相遇问题2、甲乙两队学生从相隔18千米的两地同时出发,相向而行。一个同学骑自行车以15千米的速度在两队间不停往返联络。甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行了多少千米?第六课时例7:甲乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?解:甲乙相遇时间为4分钟乙甲因为甲跑完一圈要6分钟,则甲跑乙跑的路程只要6-4=2(分钟),即跑同样的路程(虚线部分),4乙要的时间是乙的2倍。可以得出整个一圈,乙跑4分的时间均是甲的2倍。所以乙跑一圈要分钟6×2=12(分钟)钟答:乙跑一周要12分钟。练习1、小冬和小刚两人在环形跑道上以各自的不变速度跑步,如果同时从同地相背而行,小刚6分钟后两人第一次相遇,小冬跑一周要8分钟,小刚跑一周要多少分钟?2、甲、乙两车从A、B两地相对开出,6小时后相遇。甲车从A地到B地要9小时,乙车从A地到B地要几小时?第七课时例8:甲乙两人骑车同时从东西两地相向而行,8小时相遇。如果甲每小时少行1千米,乙每小时多行3千米,这样过了7小时就可以相遇。东、西两地相距多少千米?解:甲乙现在的“速度和”比原来的“速度和”多3-1=2(千米/小时)假设按照以前的速度走7小时:则少走2×7=14(千米)则余下的14千米需要1小时走完,即以前的速度和为:14÷1=14(千米/小时)所以东西两地相距:14×8=112(千米)练习1、小明和小军分别从甲乙两地同时出发,相向而行。如果按原定速度前进,则4小时相遇,如果两人各自比原定速度每小时多走1千米,则3小时相遇。甲乙两地相距多少千米?-29-

29四年级奥数下第七讲追及问题2、小明和小军分别从甲乙两地同时出发,相向而行。如果按原定速度前进,则4小时相遇,如果两人各自比原定速度每小时少走1千米,则5小时相遇。甲乙两地相距多少千米?第七讲追及问题第一课时课前热身:兔子在狗前面150米,一步跳2米,狗更快,一步跳3米,狗追上兔子需要几步?解:3-2=1(米)150÷1=150(步)答:狗追上兔子需要跳150步。几个概念速度差:快车比慢车单位时间内多行的路程,即快车每小时或每分钟比慢车多行的路程。追及时间:快车追上慢车相差的时间。追及距离(路程差):快车开始和慢车相差的路程。例1:骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?解:速度差:450÷3=150(米/分)汽车人速度:150+60=210(米/分)答:骑自行车的人每分钟行210米。例2:两艘渡船从南岸开往北岸,第一艘船以每小时30千米的速度先开,第二艘船晚开2小时,速度为每小时40千米,结果两船同时到达,求南、北两岸相距多远?解:第一艘船2小时走:30×2=60(千米)第二艘船的行驶时间为:60÷(40-30)=60÷10=6(小时)南北距离:40×6=240(千米)答:南北距离为240千米。练习1、下午放学后,小雨以每分钟50米的速度从学校步行回家,12分钟以后,小豪从学校出发,以每分钟125米的速度骑自行车去追小雨。问:小豪多少时间才能追上小雨?2、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?-30-

30四年级奥数下第七讲追及问题3、哥哥步行速度是每分钟75米,妹妹步行速度是每分钟50米,妹妹先出发30分钟后哥哥去追赶妹妹。问:哥哥多少分钟追上妹妹?这时离出发地多少米?4、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到校的距离有多远?第二课时例3在一环形下水道中,一只老鼠在猫前面200米处,当猫看到老鼠之后,以6米/秒的速度捕捉,此时老鼠以4米/秒的速度逃跑,问:多少秒后,猫能捉到老鼠,此时,老鼠和猫各跑了多少米?解:追及时间:200÷(6-4)=200÷2=100(秒)猫跑的路程:6×100=600(米)老鼠跑的路程:4×100=400(米)答:100秒后猫捉到老鼠;此时,老鼠跑了400米,猫跑了600米。练习1、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。如果两人同时从起跑线上同方向跑,那么甲经过多少时间才能第一次追上乙?2、一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人第一次相遇?3、光明小学有一条长200米长的环形跑道,亮亮和晶晶同时从起跑线起跑。亮亮每秒跑6米,晶晶每秒跑4米,问:亮亮第一次追上晶晶时两人各跑了多少米?第三课时例4:在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?解:3分20秒=200秒速度差:400÷200=2(米/秒)速度和:400÷40=10(米/秒)-31-

31四年级奥数下第八讲流水行船问题由和差问题得:甲速度:(10+2)÷2乙速度:10-6=4(米/秒)=12÷2=6(米/秒)答:甲的速度是6米/秒,乙的速度是4米/秒。练习1、一环形跑道周长300米,甲、乙两人同时同地出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。2、甲、乙两人在环形跑道上练长跑,两人从同一地点同时同向出发,已知甲每秒跑6米,乙每秒跑4米,经过20分钟两人共同相遇6次,问这个跑道有多长?3、两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?4、甲、乙两人从湖边同一地点同方向竞走,甲每分钟走60米,乙的速度比甲的2倍少30米,环湖一周是1200米,问多少时间后两人相遇?5、甲、乙两人环绕周长400米的跑道跑,如果他们从同一地点背向而行,经过2分钟相遇,如果从同一点同向而行,经过20分钟甲追上乙,求甲、乙两人每分钟的速度是多少?第八讲流水行船问题第一课时基本概念:船速:船在静水中的速度。水速:水的流动速度。顺水速度:船顺水航行的实际速度。也就是船速与水速的和。逆水速度:船逆水航行的实际速度。也就是船速与水速之差。公式:顺水速度=船速+水速逆水速度=船速-水速顺水速度=路程÷顺水时间逆水速度=路程÷逆水时间-32-

32四年级奥数下第八讲流水行船问题例1一艘船在静水中的速度是每小时35千米,水流速度是每小时5千米,逆水而行的速度是每小时多少千米?解:逆水速度=船速-水速=35-5=30(千米/小时)答:逆水而行的速度是每小时30千米。练习1、一艘船在静水中的航行速度是每小时35千米,逆水上行4小时行120千米,水流速度是每小时多少千米?2、一艘船在静水中的航行速度是每小时17千米,河水流速为每小时3千米,那么这艘船顺水航行240千米需多少小时?3、一艘船在静水中航行每小时行28千米,水速为每小时4千米,它逆水航行120千米需用多少小时?1、一艘船在静水中的航行速度是每小时35千米,水流速度是每小时5千米,逆水而行的速度是每小时多少千米?2、一艘船在静水中每小时行28千米,逆流2小时行50千米,求水速。3、一种货船在静水中的速度是每小时15千米,它逆水航行11小时走了88千米,这艘船返回需多少小时?第二课时例2一艘船顺水行320千米需用8小时,水流每小时15千米,这艘船逆水每小时行多少千米?这艘船逆水行这段路程,需用几个小时?解:顺水速度=320÷8=40(千米/小时)船速=40-15=25(千米/小时)逆水速度=25-15=10(千米/小时)逆水时间=320÷10=32(小时)-33-

33四年级奥数下第八讲流水行船问题答:这艘船逆水每小时行10千米;这艘船逆水行这段路程,需用32个小时。练习1、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?2、一只小船以每小时30千米的速度在176千米长的河中逆水而行,用了11小时,求返回原处要用几个小时?例3两个码头相距432千米,轮船顺水行这段路程需用16小时,逆水每小时比顺水少行9千米,逆水比顺水多用几个小时?解:顺水速度=432÷16=27(千米/小时)逆水速度=顺水速度-9=27-9=18(千米/小时)逆水时间=432÷18=24(小时)逆水比顺水多的时间:24-18=6(小时)答:逆水比顺水多用6小时。练习1、A、B两港相距300千米,一艘轮船逆水行完全程需要6小时,逆水每小时比顺水少行10千米,逆水比顺水多用多少个小时?2、一艘货船在相距360千米的两码头间顺水而行每小时航行60千米,顺水每小时比逆水每小时多行20千米,问:逆水航行这段路程需要几小时?第三课时例4:甲乙两港相距208千米,某船从甲开往乙,顺水8小时到达,从乙开往甲,逆水13小时到达,求船在静水中的速度和水流速度。解:顺水速度=208÷8=26(千米/小时)逆水速度=208÷13=16(千米/小时)静水速度=(26+16)÷2=21(千米/小时)水流速度=(26-16)÷2=5(千米/小时)答:船在静水中的速度是21千米/小时,水流速度是5千米/小时。公式:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2-34-

34四年级奥数下第八讲流水行船问题练习1、两地相距280千米,一艘轮船在期间航行,顺流用去了14小时,逆流用去20小时,求这艘轮船在静水中的速度。2、一艘船在河里顺流而下航行,每小时行18千米,船顺水行2小时与逆水行3小时的路程相等,那么船速是多少?水速是多少?3、一段水路长80千米,甲船顺流而下需4小时,逆流而上需要10小时。如乙船顺流而下需5小时,问乙船逆流而上需要多少小时?4、一艘船航行于120千米的长江两港口间,逆流而上用10小时,顺流而下用6小时,求水速和船速分别是多少?5、乙船顺水航行2小时,行了120千米,返回原地用了4小时,甲船顺水航行同段水路,用了3小时,求甲船在静水中的速度。第四课时例5:甲、乙两船在相距90千米的河上航行,若相向而行3小时相遇,若同向而行则15小时甲船追上乙船,求甲、乙两船在静水中的速度。解:甲船速+乙船速=90÷3=30(千米/小时)甲船速-乙船速=90÷15=6(千米/小时)答:甲的船速是30千米/小时,乙的船速是6千米/小时。练习1、甲乙两船在静水中的速度分别是每小时24千米和每小时32千米,两船从某河相距560千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?-35-

35四年级奥数下第九讲逻辑推理问题2、静水中甲、乙两船的速度分别为每小时22千米和每小时18千米,两船先后从某港口顺水开出,乙船比甲船早出发2小时,若水速是每小时4千米,问甲船开出几小时后可追上乙船?例6甲、乙两个码头相距560千米,一艘船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?解:顺水速度=560÷20=28(千米/小时)水速=顺水速度-船速=28-24=4(千米/小时)逆水速度=船速-水速=24-4=20(千米/小时)逆水时间=560÷20=28(小时)答:这船返回甲码头需28小时。练习1、甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时,现在有一机帆船,静水中的速度是每小时12千米,这只机帆船往返两港要多少小时?思考题小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并掉过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流的速度是每小时2千米,那么他们追上水壶需要多少时间?第九讲逻辑推理第一课时例1有三个小朋友在谈论谁做的好事多。冬冬说:“兰兰做的比静静多。”兰兰说:“冬冬做的比静静多。”静静说:“兰兰做的比冬冬少。”这三位小朋友中,谁做的好事最多?谁做的好事最少?【思路导航】我们用“>”来表示每个小朋友之间做好事多少的关系。兰兰>静静冬冬>静静冬冬>兰兰所以,冬冬>兰兰>静静,冬冬做的好事最多,静静做的好事最少。答:冬冬做的最多,静静做的最少。练习1、卢刚,丁飞和陈瑜三人,一位是工程师,一位是医生,一位是飞行员。现在知道:卢刚和医生不同岁;医生比丁飞年龄小;陈瑜比飞行员年龄大。请问,谁是工程师,谁是医生,谁是飞行员?-36-

36四年级奥数下第九讲逻辑推理问题2、小李、小徐和小张是同学,大学毕业后分别当了老师,数学家和工程师。小张年龄比工程师大;小李和数学家不同岁;数学家比小徐年龄小。想一想,谁是教师,谁是数学家,谁是工程师。3、江波、刘晓、吴萌三位老师,其中一位教语文,一位教数学,一位教英语。已知:江波和语文老师是邻居;吴萌和语文老师不是邻居;吴萌和数学老师是同学。请问:三位老师分别教什么科目?例2:有一个正方体,每个面分别写上汉字:数学奥林匹克。三个人从不同角度观察的结果如下图所示。问这个正方体的每个汉字的对面是什么字?林学克奥匹奥数数林(1)(2)(3)从图(1)中可知,“奥”的对面不是“林”“匹”,从图(2)中可知,“奥”的对面不是“数”、“学”所以,“奥”的对面一定是“克”从图(2)中可知:“数”的对面不是“奥”、“学”,从图(3)中可知,“数”的对面不是“克”“林”,所以“数”的对面一定是“匹”。剩下的“学”的对面一定是“林”。答:“奥”的对面是“克”,数的对面是“匹”,“学”的对面是“林”。练习1、下面三块正方体的六个面都是按相同的规律涂有红黄蓝绿白黑六种色。请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?白绿黄黑黄白红蓝红(A)(B)(C)2、一个正方体,六个面分别写上ABCDEF,你能根据这个正方体不同的摆法,求出相对的两个面的字母是什么?FBEADCADC-37-

37四年级奥数下第九讲逻辑推理问题3、五个相同的正方体木块,按相同的顺序在上面写上数字1~6,把木块叠成右图,那么,2的对面是几?4的对面是几?5的对面是几?524556634653第二课时例3:甲乙丙三个孩子踢球打碎了玻璃窗,甲说:“是丙打碎的”。乙说:“我没有打碎玻璃窗”,丙说:“是乙打碎的。”他们当中只有一个人说了谎话,到底是谁打碎了玻璃窗?【思路导航】必须符合他们当中只有一人说了谎,推理时可以先假设,看结论和条件是否矛盾。如果是甲打碎的,那么是甲说谎话,乙说真话,丙说谎话,这样两人说的话是谎话,与他们中只有一人说谎矛盾,所以不是甲打碎的。如果是乙打碎的,那么甲说的是谎话,乙说的是谎话,丙说的是谎话,丙说的是实话,也与他们中只有一个说谎相矛盾,所以不是乙打碎的。如果是丙打碎的,那么甲说的是实话,乙说的是实话,二丙说的是谎话。这样有两个人说的是实话,符合条件他们中只有一个说的是谎话,所以玻璃是丙打碎的。练习1、已知甲乙丙三个中,只有一个人会开汽车。甲说:“我会开汽车”。乙说:“我不会开”。丙说:“甲不会开汽车。”如果三个人中有一个讲的是真话,那么谁会开汽车?2、某学校为表扬好人好事核实一件事,老师找了ABC三个学生,A说:“是B做的”。B说:“不是我做的”。C说:“不是我做的”。这三个人中只有一个人说了实话,这件事是谁做的?3、ABCD四个孩子踢球打碎了玻璃。A说:“是C或D打碎的”。B说:“是D打碎的”。C说:“我没有打碎玻璃”。D说:“不是我打碎的。”他们中只有一个人说了谎,到底是谁打碎了玻璃窗?例题4:甲乙丙丁四个人同时参加数学竞赛。赛后,甲说:“丙是第一名,我是第三名。”乙说:“我是第一名,丁是第四名”。丙说:“丁是第二名,我是第三名”。丁没有说话。成绩揭晓时,大家发现甲乙丙三个人各说对了一半。你能说出他们的名词吗?【思路导航】推理时,必须以“他们都只说对了一半”为前提。为了帮助分析,我们可以借助图表分析。-38-

38四年级奥数下第九讲逻辑推理问题名次第一名第二名第三名第四名甲×乙×丙√√丁×√(1)假如甲说丙是第一名是对的,那么甲说“我第三名”是错的,乙说“我是第一名”也是错的,而乙说的“丁是第四名”是对的。(2)由丁是第四名推出丙说丁是第二名是错的,根据条件,丙说“我第三名”是对的。(3)这样,丙既是第一名,又是第三名,自然是错的。重新推理:名次第一名第二名第三名第四名甲√乙√丙××丁√×(1)假设甲说“我是第一名”是对的,那么“丙是第一名”错的,由丙说“我是第三名”是错的,“丁是第二名”是对的。(2)由“丁第二名”推出乙说“丁是第四名”是错的,从而乙说“我是第一名”是对的。(3)从表中可以看出:乙是第一名,丁是第二名,甲是第三名,丙是第四名。练习1、甲乙丙丁四个人进行游泳比赛,赛前名次众说纷纭。有的说:“甲是第二名,丁是第三名。”有的说:“甲是第一名,丁是第二名。”有的说:“丙是第二名,丁第四名。”实际上,上面三种说法各说对了一半。问甲乙丙丁各是第几名?2、红黄蓝白紫五种颜色的珠子各一颗,用纸包着放在桌子上一排,甲乙丙丁戊五个人猜各包里面珠子的颜色。甲猜:第二包紫色,第三包黄色。乙猜:第二包蓝色,第四包红色。丙猜:第一包红色,第五包白色。丁猜:第三包蓝色,第四包白色。戊猜:第二包黄色,第五包紫色。结果每个人各猜对了一半,他们各猜对了哪种颜色的珠子?3、张老师要五个同学给鄱阳湖、洞庭湖、太湖和巢湖和洪泽湖每个湖泊上写上号码,这五个同学只对了一半,他们是这样回答的:-39-

39四年级奥数下第九讲逻辑推理问题甲:2是巢湖,3是洞庭湖;乙:4是鄱阳湖,2是洪泽湖;丙:1是鄱阳湖,5是太湖;4是太湖,3是洪泽湖;戊:2是洞庭湖,5是巢湖。请写出各个号码所代表的湖泊。例题5:ABCD与小强五个同学一起参加象棋比赛,每两个都赛一场,比赛一段时间统计,A赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘,问小强已经赛了几盘?【思路导航】用5个点表示这5个人,如果某两个人之间已经进行了比赛,就在表示两个人的点之间画一条线,现在A赛4盘,所以A应该与其余4个点都连线。B赛了3盘,由于D只赛了1盘,是和A赛的,所以B应该与C连。(B、A已经连接)C已经连了两条线。小强也连了2条线,即小强已经赛了2场。练习1、上海、辽宁、北京、山东四个省足球队进行循环赛,到现在为止,上海队赛了3场,辽宁队赛了2场,山东队赛了1场,问北京队赛了几场?2、明明、冬冬、兰兰、静静、思思和毛毛六人参加一次会议,见面时每两人都要握一次手,明明已经握了5次手,冬冬握了4次手,兰兰握了3次手,静静握了2次手,思思握了1次手。问:毛毛握了几次手?3、甲乙丙丁比赛乒乓球,每两人要塞一场,结果甲胜了丁,并且甲乙丙三人的场数相同。问丁胜了几场?思考题传说古代有个“说谎国”和一个“老实国”。说谎国里的人全说谎话,老实国里的人全说实话。有两个说谎国的人想跟着一个老实国的人混进老实国。进城时哨兵问:“你们是哪一国人?”甲说:“我是老实国人。”乙说得很轻,哨兵没有听见,于是指着乙问丙:“他是哪国人?你又是哪国人?”丙说:“他说他是老实国人,我也是。”请你判断,谁是老实国的人?-40-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭