《Amphiphilic Silicon Hydroxyl-Functionalized cis -Polybutadiene Synthesis, Characterization, and Properties - Zheng et al. - 2021 - Unkno》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/MacromoleculesArticleAmphiphilicSiliconHydroxyl-Functionalizedcis-Polybutadiene:Synthesis,Characterization,andPropertiesYingyingZheng,HanZhu,*XianchenHuang,andYixianWu*CiteThis:Macromolecules2021,54,2427−2438ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Aseriesoflivingcis-polybutadiene(cis-PB)chainswithdesiredmolecularweightscouldbesuccessfullysynthesizedduringthepolymerizationprocessatdifferentmonomerconversionsorbysequentialadditionofanextramonomerateverypolymerizationstage.Theamphiphilicsiliconhydroxyl-functionalizedcis-PB(cis-PB-Si(OH)3)couldbefurtherachievedviacopolymerizationoftheabovelivingcis-PBchainswithethenyltrimethoxy-silanetoobtaintrimethoxysilane-functionalizedcis-PBsandhydrolysisofthesepolymers.Itisfoundthatthestar-shapedcis-PBswereformedbyself-assemblyviahydrogenbondinginteractionfromtheend-functionalgroupsof−Si(OH)3.Thesurfaceofcis-PB-Si(OH)3filmstransformedfromhydrophobictohydrophilicafterwaterinductionat50°CwhentheMofcis-PBsegmentswaslowerthan9.1kg·mol−1.Theabovehydrophiliccis-nPB-Si(OH)3filmsexhibitgoodself-healingbehaviorat25°Cowingtoagreatcontributionfrom−Si(OH)3hydrophilicterminals.Theamphiphiliccis-PB-Si(OH)3anditsaggregateswouldhavepotentialapplicationinrecyclableelastomersorself-healingelasticcoatingswithlow-temperatureresistance.■INTRODUCTIONpresenceofanappropriatechaintransferagent.However,Polyolefinisthelargestvolumeclassofpolymerssofarwithseveralsidereactionssuchaschaindegradationandcross-superiorpropertiesandwideapplications,whichaccountsforlinkingreactionoccurredduringthechaincleavagereactionofDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at06:35:41(UTC).1morethan50%oftheplasticproductionworldwide,andmorepolyolefins,leadingtodifficultyincontrollingthepolymerSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.than90%ofthecommercialpolyolefinproductsareproducedarchitectures.Directfunctionalizationonpolyolefinsconsists2withZiegler−Nattacatalysts.Thelackofpolarityalongtheofcopolymerizationofolefinwithfunctionalizedpolarpolyolefinmacromolecularchainslimitsitsapplicationsin101112comonomers,suchasacrylate,acrylonitrile,acrylamide,somespecialfields.Chain-endandin-chainfunctionalizations13141415onpolyolefinscanconferitwithreactivityandimproveitsacrylicacid,vinylacetate,vinylether,vinylhalideand3,4N-orS-functionalized1,3-dienes16topreparein-chain-adhesionandcompatibilitywithothermaterials.Normally,therearetwomainmethodsforthepreparationofthefunctionalizedpolyolefinsandend-cappingoflivingpolyolefin5−9functionalizedpolyolefins,i.e.,postfunctionalizationandchainsbyadditionofafunctionalizedterminatortoprepare10−16directfunctionalization.Inthefirstmethod,postfunction-theend-group-functionalizedpolyolefins.alizationonpolyolefinswascarriedouttopreparetheend-groupfunctionalizedpolymersbycombiningthechaincleavagereactionofpolyolefinswithepoxidationreaction,5Received:December8,2020metathesisdepolymerization,6andSchwartzhydrozircona-Revised:February11,2021tion.7Inthesecondmethod,postfunctionalizationonPublished:February24,2021polyolefinswascarriedouttopreparetheend-group-functionalizedpolymersviaring-openingmetathesispolymer-89ization(ROMP)orcross-metathesispolymerizationinthe©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.macromol.0c026972427Macromolecules2021,54,2427−2438
1Macromoleculespubs.acs.org/MacromoleculesArticle17inpurifiedhexanewithaconcentrationof1.5mol·L−1.Ethenyl-LivingpolymerizationfoundbySzwarcprovidesanextremelyeffectivewaytoaccessmacromoleculeswithtrimethoxy-silane(V-Si(OMe)3,A.R.,NanjingKunchenChemicalCo.)wasdilutedto1.1mol·L−1beforeuse.Triisobutylaluminumcontrolledarchitectures,molecularweights,andmolecularweightdistributions.18−20Thecis-PBwithexcellentproper-solution(Al(i-Bu)3,AkzoNobelN.V),dichloromethane(CH2Cl2,21−24A.R.,BeijingYiliFineChemicalCo.),tetrahydrofuran(THF,A.R.,tiesinelasticityresilience,flexibility,abrasionresistance,BeijingYiliFineChemicalCo.),ethanol(C2H5OH,A.R.,BeijingYiliandrollingresistance,iscommerciallyproducedviacoordina-FineChemicalCo.),xylene(A.R.,BeijingYiliFineChemicalCo.),tionpolymerizationofbutadiene(Bd)usingcobalt-,nickel-orcyclohexane(A.R.,BeijingYiliFineChemicalCo.),andn-octadecyl25neodymium(Nd)-basedcatalysts.The“living”polymer-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate)(A.R.,BASFSE.)izationofbutadienewascarriedoutwith[(η3-allyl)-wereusedasreceived.NiOCOCF]26bis(u-trifluoroacetato)(η3:η3-2,2′-biallyl)-Livingcis-SpecificPolymerizationofButadienewithNd-32,dinickel(II),27orcobaltdihalides28catalystsystem.ThelivingBasedCatalyticSystem.ThepreparationofthecatalystsystemspolymerizationofbutadienewithNd-basedcatalystswithoutandpolymerizationswerecarriedoutunderadrynitrogenatmosphere.Accordingtoourpreviousworks,thecatalystsystemchaintransferandterminationreactionscouldbeachievedwasformedbymixingneodymiumcarboxylate(Nd)solution,alkylonlyatextremelylowtemperature(−70°C),andcis-PBwithaluminumcompound(Al)solution,andchlorinatingagent(Cl)atarelativelyhighnumber-averagemolecularweight(Mn)of>410predeterminedtemperatureforadefinitetime.44,45Themonomerkg·mol−1wasobtained.29Theend-group-functionalizedcis-PBssolutionofbutadieneinhexanewasintroducedintoaround-couldbeachievedbyterminatingthelivingcis-PBchainsafterbottomedflask,andtheNd-basedcatalystsolutionwasaddedbyacoordinationpolymerizationbyaddingappropriatefunctionalsyringetostartthepolymerizationat50or60°C.30,313030Synthesisofcis-PB-Si(OH).Thetrimethoxysilane-function-agentssuchasepoxy,ketone,ketimine,isocyanate3compounds,30carboxylcompounds,30halogen,32aldehyde,33alizedcis-PBs(cis-PB-Si(OMe)3)weresynthesizedbyaddingtheamide,33ester,33imidazolidinone,33pentamethylsiloxane,34functionalreagentV-Si(OMe)3tostartthecopolymerizationfromcis-and3-glycidoxypropyltrimethoxysilane.31,35Unfortunately,thePBlivingchains.Sampleswereterminatedbytheadditionofethanolandsubjectedtoantioxidanttreatmentbykeepingthen-octadecyl3-resultingend-group-functionalizedcis-PBswithrelativelylow[3,5-di-tert-butyl-4-hydroxyphenyl]propionateconcentrationinfunctionalitywereobtainedduetothecomplexchemical30−35samplesatabout0.2wt%.Thehydrolysisofcis-PB-Si(OMe)3wasmechanismandself-terminationreaction.Ontheothercarriedoutbymixingtheresultingpolymersolutioninhexanewithhand,thereversiblechaintransferpolymerizationofbutadienedeionizedwaterat70°Cfor0.5hunderintensestirring(800rad·withanNd-basedcatalystsystemwasfirstlyreportedbymin−1)toobtaincis-PB-Si(OH).Theproductswererepeatedly336,37Nuykenandco-workersandhasbeenusedtosynthesizewashedwithwateranddriedundervacuumat25°Ctoaconstant3839weight.blockcopolymersandend-group-functionalizedpolymers.PolymerchainscarryinghydroxylgroupsintroducehydrogenCharacterization.GelPermeationChromatography(GPC).Thelinearcis-PBwasdissolvedinTHF(2mg·mL−1),andthepolymerbonds,whichhasbeenrecognizedasaneffectivewaytobuildself-healingmaterials.Hydroxyl-terminatedpolybutadienesolutionwasfilteredthrougha0.45μmmicrofilterbeforeinjection40intothesystem.Thelinearcis-PBwasmeasuredbyaWaters1515-(HTPB)couldbeusedinself-healingelasticcoatings,41422410GPCsystem(GPC,Waters,Milford)equippedwithfourWatersadhesives,recyclableelastomers,andsupramolecular43StyragelHT2-4-5-6columnsunderaTHFeluentwithaflowrateofpolymergels.1.0mL·min−1at30°C.TheGPCprofileofthelinearcis-PBwasInthiswork,anovelsyntheticmethodhasbeendevelopedrecordedonWatersRI2410detector.Thenumber-averagemolecularforthepreparationofamphiphilicsiliconhydroxyl-function-weight(Mn),weight-averagemolecularweight(Mw),andmolecularalizedcis-PB(cis-PB-Si(OH)3)withanextremelyhighweightdistribution(MWD,Mw/Mn)ofsampleswerecalibratedwith44functionalityofaround95%.Aseriesoflinearcis-PB-Si(OH)3Mark−Houwinkconstants(K=0.000457,α=0.693).precursorswithdifferentmolecularweightscouldbeGPCCoupledwithaMultiangleLightScatteringDetector(GPC-MALS).Inordertoinvestigatetheconformationsofcis-PBandcis-PB-successfullysynthesizedbylivingcoordinationcopolymeriza-Si(OH)3,samplesweremeasuredbyGPCcoupledwithamultiangletionofthelivingcis-PBchainendswithethenyltrimethoxy-lightscatteringdetector(MALS),anonlineviscometer(VIS),andasilane(V-Si(OMe)3),andthencompletehydrolysisreactionofrefractiveindexdetector(RI).SamplesweredissolvedinTHF(3mg·the−Si(OMe)3functionalgroupsattheendofcis-PBchains.mL−1),andpolymersolutionswerefilteredthrougha0.45μmThestar-shapedcis-PBwithhighmolecularweightfurthermicrofilterbeforeinjection.Samplesweremeasuredat35°Cbyaformedinbulkviaself-assemblyoflinearcis-PB-Si(OH)3WyattGPCsystemequippedwithWyattDAWNHELEOS-II,precursors.Thehydrophobicity/hydrophilicityonthesurfaceViscoStar-IIviscometer,OptilabT-rex(WyattTechnologyCo.,Santaofcis-PB-Si(OH)3filmscouldbeeffectivelymediatedbyBarbara),andfourStyragelMz-Gel100Å-10e3Å-10e5Å-10e6Åchangingthemolecularweightofthecis-PBsegments(Mn,PB)GPCcolumns(MZ-AnalysentechnikGmbH,Mainz,Germany)underaTHFeluentwithaflowrateof1.0mL·min−1.TheMark−Houwinkand/orbyrearrangingthefunctionalgroupsandchainplot(log[η]=logK+αlogM)isthelogarithmoftheintrinsicsegments.Interestingly,thesurfaceofthecis-PB-Si(OH)3viscosityplottedagainstthelogarithmofthemolecularweight(M),filmscouldeventuallychangefromhydrophobictohydrophilic46whereKisindependentofthemolecularweightofmolecules.Theafterthepolymerswithrelativelyshortcis-PBsegments(Mn,PBslopeoftheMark−Houwinkplot(α,Mark−Houwinkexponent)can<9.1kg·mol−1)wereinducedbyhotwater.Theamphiphilicbeusedtodeterminetheshapeofthemoleculesinthesolution.Thecis-PB-Si(OH)3functionalpolymersexhibitgoodelasticityandabsoluteweight-averagemolecularweight(Mw),theradiusofgyrationself-healingbehaviorat25°CwhenMn,PBwaslowerthan11.7(Rg),hydrodynamicradius(Rh),andαvaluesofsampleswerekg·mol−1,whichwouldhavepotentialapplicationinrecyclablecollectedandcalculatedbyASTRAsoftware(WyattTechnologyCo.,elastomersandself-healingelasticcoatingsoradhesives.SantaBarbara).FourierTransformInfraredSpectrometry(FTIR).Thechemical■structureofsampleswasdeterminedwithaNicolet6700FTIREXPERIMENTALSECTIONspectrophotometer(FTIR,ThermoFisherScientific,Medison)afterMaterials.Hexane(BeijingYanshanPetrochemicalCo.)waspurificationtoremovetheunreactedchemicals.Thecharacteristicpurifiedbydistillationovercalciumhydridebeforeuse.Butadieneabsorptionsassignedtomicrostructurespresentinthepolymerchains47(Bd,purity:99.5%,BeijingYanshanPetrochemicalCo.)wasdissolvedareusedforFTIRquantitativeanalysis.Theabsorptionsat10822428https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
2Macromoleculespubs.acs.org/MacromoleculesArticleFigure1.(a)Plotsofmonomerconversionandln([M]0/[M])withpolymerizationtime(tp)and(b)relationshipbetweenmolecularweightoftheresultingcis-PB(Mn,PB)andmonomerconversionincoordinationpolymerizationofbutadiene.Theinsetfigurein(b)iscomparisonofGPCprofilesofcis-PBsobtainedatvariousbutadieneconversions.Polymerizationconditions:n/n=2000,[Bd]=1.5mol·L−1,andT=50°C.Bd0Nd00pand1654cm−1wereattributedtothestretchingSi−Ointheelectronmicroscopy(SEM,JEOL,Japan)atanacceleratingvoltageof−Si(OCH3)3groupsanddoublebondsofcis-PBsegments,5kV.respectively.Mixturesofcis-PBandV-Si(OMe)3(cis-PB/V-Si-WaterContactAngle(WCA).Filmsofcis-PB-Si(OH)3were(OMe)3)withvariousmolarratiosofV-Si(OMe)3totherepeatingpreparedbyspreadingasmallamountofthepolymersolutioninunitsincis-PB(n/n)werepreparedinsolutionsfortheirhexaneataconcentrationof12mg·mL−1onaglassslide.Then,theV‑Si(OMe)3BdFTIRanalysis.TherepresentativeFTIRspectraofcis-PB/V-solutionwasevaporatedandannealedat30°Cfor12h.Si(OMe)3mixturesaregiveninFigureS1a.ThedependenceoftheSubsequently,thefilmsofcis-PB-Si(OH)3wereimmersedinhotratioofabsorptionat1082cm−1toabsorptionat1654cm−1(ΔA/waterat50°Cfor3hunderstirring.48Wettabilityofthesurfaceof1082ΔA1654)onthenV‑Si(OMe)3/nBdratioisshowninFigureS1b.ThethepolymerfilmwasanalyzedusingaJC2000D1waterstaticcontactrelationshipbetweenΔA1082/ΔA1654andnV‑Si(OMe)3/nBdisshowninangleanalyzer(WCA,ShanghaiZhongchenDigitalTechnicthefollowingequationApparatusCo.,Shanghai,China)byaddingapproximately2μLofwaterdropletsviaasyringeneedleonthesurfaceofsamples.nSi(OMe)3/nABd=×0.0147ΔΔ1082/A1654(1)Phase-ContrastMicroscopy(PCM).Thefilmsofcis-PBandcis-PB-ThenSi(OMe)3/nBdratiosincis-PB-Si(OMe)3arecalculatedaccordingSi(OH)3beforeandafterwaterinductionwereselectedtoverifytheself-healingproperties.Acrossscratchwasmadeonthefilmwithatotheaboveequation.Thefunctionalityofcis-PB-Si(OMe)3knife.Thesamplewasplacedatroomtemperature(25°C)andthe(F‑Si(OMe)3)isdefinedasthepercentageofthepolymerchainsself-healingprocessofthecrossscratchwasobservedon-linethroughcarrying−Si(OMe)3functionalgroupsinthetotalpolymerchains.anOlympusU-OPAJAPANBX51(PCM,Olympus,Tokyo,Japan).F‑Si(OMe)3iscalculatedaccordingtothefollowingequationnSi(OMe)3F−Si(OMe)3=×100%■RESULTSANDDISCUSSIONnMBd×54.09/n,PBLivingcis-SpecificPolymerizationofButadienewithΔA1082Mn,PBanNd-BasedCatalyticSystem.Thelivingnatureof=××100%ΔA165454.09/0.0147(2)coordinationpolymerizationofbutadienewithanNd-basedwhere54.09isthemolecularweightofbutadienestructuralunitsandcatalyticsystemwasinvestigatedat50°CbysettingthemolarMn,PBisthenumber-averagemolecularweightofthecis-PBsegments.ratioofnBd0/nNd0at2000.TheplotsofmonomerconversionProtonNuclearMagneticResonance(1HNMR).Thechemicalagainstthepolymerizationtime(tp),andtherelationshipstructureofthepolymerchainswasanalyzedviaaBrukerAV600betweenthenumber-averagemolecularweightoftheresultingspectrometerwithanangularfrequencyof400MHzat30°C(1Hcis-PBs(Mn,PB)andmonomerconversionareshowninFigureNMR,Bruker,Bremen,Germany).SamplesweredissolvedinCDCl31.AcomparisonofGPCprofilesofcis-PBsobtainedatvarious(30mg·mL−1)in5mm(o.d.)NMRtubes.butadieneconversionsisalsoinsetinFigure1b.ItcanbeseenRheologicalMeasurements.ThesupramolecularnetworkandfromFigure1athatthemonomerconversiongraduallystabilityofthesupramolecularaggregatesformedbyself-assemblyofincreasedwithprolongingpolymerizationtime.Thelinearcis-PB-Si(OH)3wereinvestigatedusingaDiscoveryHR-2rheometer(TAInstruments,NewCastle)equippedwithparallelaluminumincreaseofln([M]0/[M])withincreasingpolymerizationtimeplates(diameter25mm).Themeasurementtemperature(variedindicatesthatthepropagationwasfirst-orderwithrespecttofrom25to100°C)wascontrolledbyanenvironmentaltestchamberthemonomerconcentration,andtheconcentrationofthe(ETC)system.Oscillationfrequencysweepmeasurementsweregrowingspecieswasconstantduringthepolymerizationperformedat25°Cwithastrainof0.5%overabroadfrequencyrange49process,whichissimilartotheresultintheliterature.Thefrom0.1to100Hz.Oscillationtemperaturerampmeasurementswerefactthatthefirst-orderplotpassingthroughtheoriginrevealsperformedfrom25to100°Cwithastrainof0.5%,anangularthatthereisnoinductionperiodforthepolymerizationfrequencyof1Hz,andaheatingrateof3°C·min−1.process.AllGPCtracesoftheresultingcis-PBsinFigure1bScanningElectronMicroscopy(SEM).Thecis-PB-Si(OH)3demonstrateunimodalmolecularweightdistribution,andGPCsamplesstoredat25°Cfor6monthswereextractedbycyclohexaneat25°Cfor48htoremovethesolublepolymerchainswithoutprofilesofcis-PBsgraduallyshifttowardhigh-molecular-weightfunctionalterminals,andthentheinsolublepolymerchainsobtainedregionwithincreasingmonomerconversion.TheMn,PBwererepeatedlyextractedbyxylene3times.Morphologyoftheincreasedlinearlywithanincreaseinthemonomerconversionfreeze-driedcis-PB-Si(OH)3samplewasexaminedby7500Fscanning(Figure1b),suggestingthatirreversiblechaintermination2429https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
3Macromoleculespubs.acs.org/MacromoleculesArticlereactionscouldbenegligibleandthecoordinationpolymer-izationofbutadieneproceededinalivingmanner.Tofurtherconfirmthelivingnatureofcoordinationpolymerizationofbutadiene,afreshfeedofmonomerwasaddedtothereactionmixturesoncethepreviousbutadienemonomerwasconsumed.Thepolymerizationwascarriedoutat50°CbysettingthemolarratioofnBd0/nNd0at1400,andfeedingthesameamountofbutadienemonomerinhexaneataconcentrationof1.5mol·L−1intothepolymerizationsystem4timesatanintervalof2h.AsshowninFigure2,theGPCFigure3.Relationshipbetweenthecontentsofmicrostructures(cis-1,4,trans-1,4,and1,2-vinyl)andmolecularweightoftheresultingcis-PBs(Mn,PB).thenBd0/nNd0molarratioorbysequentialadditionofanextramonomerafterconsumptionofthemonomerateverypolymerizationstage.Synthesisofcis-PB-Si(OMe)3byCopolymerization.OnthebasisoftheaboveobservationthatMn,PBincreasedbyFigure2.Relationshipbetweenthemolecularweightoftheresultingsequentialadditionofthemonomersuggeststhatthechaincis-PBs(Mn,PB)atdifferentpolymerizationstagesandthepolymerpropagationkeepsproceedingiftherearemonomermoleculesyieldforsequentialadditionofthemonomer.Theinsetfigureisainthepolymerizationsystem.AnovelsyntheticmethodforcomparisonofGPCprofilesofcis-PBsobtainedateverypolymer-preparingcis-PBcarryinganotherstructuralunit,suchasizationstage.Polymerizationconditions:nBd0/nNd0=1400,Tp=50°C,and[Bd]0=1.5mol·L−1.−CH2CHSi(OMe)3,wasdevelopedbyaddinganotherkindofpolarcomonomerethenyltrimethoxy-silane(V-Si(OMe)3).Thesyntheticrouteforend-groupfunctionalizationofcis-PBtracesofcis-PBsshiftedtowardhigh-molecular-weightregionspreparedbylivingcoordinationcopolymerizationissummar-aftereachstepofsequentialadditionofmonomer.ThefactizedinScheme1.V-Si(OMe)3wasaddedtothepolymer-thatMn,PBatdifferentpolymerizationstagesincreasedindirectizationsolutioncontaininglivingcis-PBchainsinhexaneafterproportiontocis-PByieldaftereverymonomeradditionbutadieneconsumptioninlivingcoordinationpolymeriza-36furtherverifiesthelivingcharacteristicsinthispolymerization.tion.Thetrimethoxysilane-functionalizedcis-PB(cis-PB-BasedonthislivingcoordinationpolymerizationofSi(OMe)3)wasobtainedthroughcopolymerizationofthebutadiene,aseriesoflivingcis-PBchainswithMnranginglivingcis-PBchainendswithV-Si(OMe)3.Iftheresultingcis-from1.7to45.5kg·mol−1couldbesuccessfullysynthesizedatPB-Si(OMe)hadMof8.2kg·mol−1incis-PBsegmentsand3ndifferentnBd0/nNd0ratiosrangingfrom100to5000at60°Cfunctionalityof92%,thecis-PB-Si(OMe)3samplewas(FigureS2).Thecontentsofmicrostructuresincludingcis-1,4,expressedascis-PB8.2k-Si(OMe)3-92.trans-1,4,and1,2-vinyloftheresultingcis-PBswithdifferentThechemicalstructureofthelinearcis-PBbeforeMn,PBvaluesareshowninFigure3.Alloftheresultingcis-PBscopolymerizationandcis-PB-Si(OMe)3functionalpolymerhadaverylow1,2-vinylcontentoflessthan2.3%.ItcanbeaftercopolymerizationwascharacterizedbyFTIRspectrosco-seenfromFigure3thatthecontentofcis-1,4remainedalmostpy.Figure4adisplaystherepresentativeFTIRspectraofcis-unchangedataround81.6%whenMn,PBrangedfrom1.7toPB8.2kandcis-PB8.2k-Si(OMe)3-92.ItcanbeseenthatFTIR14.8kg·mol−1,whichisdifferentfromthereportsinwhichthespectraofbothcis-PBandcis-PB-Si(OMe)-92exhibit8.2k8.2k3cis-1,4contentnormallydecreasedwithdecreasingmolecularcharacteristicabsorptionbandsat738,967,and911cm−1for25,32weightofpolydienes.Thecis-1,4contentmightbeonlythecis-1,4,trans-1,4,and1,2-vinylofcis-PB,respectively.AsrelatedtotheterminalallylunitofthepolymerchainshowninFigure4a,thegeneratedabsorptionbandat1082coordinatedtothemetalsite50andwouldnotbeaffectedcm−1isattributedtothestretchingvibrationofSi−OinwhenMwaslowerthan14.8kg·mol−1.Moreover,the−Si(OCH),andthecorrespondingsignalat1600cm−1forn,PB33contentofcis-1,4increasedgreatlyfrom81.6to97.0%withanthedoublebondsintheV-Si(OMe)3comonomerdisappeared,increaseinMfrom14.8to45.5kg·mol−1duetothedifficultindicatingthatthe−Si(OMe)groupwaschemicallybondedn,PB3anti-syntransitionforthelargesterichindrancefromlongtotheendofcis-PBmacromolecularchains.Figure4bdepicts50polymerchains.thechemicalstructureofcis-PB8.2k-Si(OMe)3-92characterizedTherefore,thelivingcis-PBchainswithunimodalmolecularby1HNMRanalysis.ItcanbeobservedfromFigure4bthatweightdistributionandthedesiredmolecularweight(Mn)thedetectablesignalinthechemicalshiftat3.53ppmfortherangingfrom1.7to45.5kg·mol−1couldbeachievedvialivingcharacteristicresonanceofhydrogenatoms(j)in−Si−coordinationpolymerizationofbutadieneduringthepolymer-(OCH3)3groupsforcis-PB-Si(OMe)3isdifferentfromtheizationprocessatdifferentmonomerconversionsbychangingsignalat3.58ppmforthecharacteristicresonanceofhydrogen2430https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
4Macromoleculespubs.acs.org/MacromoleculesArticleScheme1.SyntheticRouteofTrimethoxySilane-Functionalizedcis-PBsviaCopolymerizationofLivingcis-PBChainEndswithEthenyltrimethoxy-SilaneFigure4.(a)ComparisonoftheFTIRspectraofcis-PBandcis-PB-Si(OMe)-92and(b)comparisonofthe1HNMRspectrumofcis-PB8.2k8.2k38.2kandcis-PB8.2k-Si(OMe)3-92inCDCl3.Figure5.Effectsof(a)nV‑Si(OMe)3/nNd0molarratio,(b)copolymerizationtemperature(Tp2),and(c)Mnofcis-PBsegments(Mn,PB)onthefunctionality(F)ofcis-PB-Si(OMe).Conditions:(a)M=20.0kg·mol−1,T=50°C,t=3h,(b)M=20.0kg·mol−1,n/‑Si(OMe)33n,PBp2p2n,PBV‑Si(OMe)3nNd0=10,tp2=3h,(c)Tp2=60°C,nV‑Si(OMe)3/nNd0=10,tp2=3h.atomsin−Si−(OCH3)3fortheV-Si(OMe)3comonomerSi(OMe)3wasnegligible,andthusahighfunctionalityof(FigureS3).around95%wassuccessfullyachievedforpolymerswithThefunctionalityofcis-PB-Si(OMe)3(F‑Si(OMe)3)isoneofdifferentmolecularweightsbysettingthemolarratioofthemostimportantindexesfortheevaluationofend-group-nV‑Si(OMe)3/nNd0of10at60°Cfor3h.functionalizedpolymers.ItisofgreatsignificancetodesignandSynthesisofAmphiphiliccis-PB-Si(OH)3viaHydrol-synthesizecis-PB-Si(OMe)3withhighfunctionality.Theeffectsysisofcis-PB-Si(OMe)3.InordertosynthesizethedesiredofnV‑Si(OMe)3/nNd0molarratioandcopolymerizationtemper-amphiphiliccis-PB-Si(OH)3,hydrolysisoftheabove-men-ature(Tp2)onthefunctionalityofcis-PB-Si(OMe)3weretionedcis-PB-Si(OMe)3wasfurthercarriedoutbymixingtheinvestigatedbyselectinglivingcis-PBchainswithMnofaroundresultingpolymersolutioninhexanewithdeionizedwaterat20.0kg·mol−1.AsshowninFigure5a,thefunctionalityofcis-70°Cfor0.5hundervigorousstirring.If−Si(OMe)3PB-Si(OMe)3increasedfrom52to96%withincreasingfunctionalgroupswerecompletelytransformedinto−Si(OH)3nV‑Si(OMe)3/nNd0from1to25atTp2of50°C.Theinfluenceoffunctionalgroups,thefunctionalityofcis-PB-Si(OH)3wasTp2onthefunctionalityofcis-PB-Si(OMe)3wasfurtherstudiedatnV‑Si(OMe)3/nNd0of10for3h.Thefunctionalityofequaltothefunctionalityofcis-PB-Si(OMe)3.Whentheresultingcis-PB-Si(OH)hadanMof34.7kg·mol−1incis-PBcis-PB-Si(OMe)3increasedfrom58to90%withincreasingTp23nfrom30to60°C(Figure5b).Onthebasisoftheabovesegmentswithafunctionalityof90%,thecis-PB-Si(OH)3observation,cis-PB-Si(OMe)3withhighfunctionalityofsamplewasexpressedascis-PB34.7k-Si(OH)3-90.Ifcis-PB34.7k-around95%couldbeachievedwithrelativelylowSi(OH)3-90wasstoredat25°Cfor60h,thecis-PB-Si(OH)3nV‑Si(OMe)3/nNd0of10at60°C.Itcanbeobservedfromsamplewasexpressedascis-PB34.7k-Si(OH)3-90-60h.TheFigure5cthattheeffectofMn,PBrangingfrom3.6to25.2kg·syntheticrouteofcis-PB-Si(OH)3viathehydrolysisreactionmol−1onthefunctionalityofcis-PB-Si(OMe)andcis-PB-ofcis-PB-Si(OMe)isshowninScheme2.332431https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
5Macromoleculespubs.acs.org/MacromoleculesArticleScheme2.SyntheticRouteofAmphiphiliccis-PB-Si(OH)3precursors.Theconformationofcis-PB-Si(OH)3withdifferentviatheHydrolysisReactionofcis-PB-Si(OMe)3Mn,PBvaluesandstoragetimewascharacterizedbyGPC-MALS,andthecorrespondinglinearcis-PBwithoutfunctionalgroupswastakenasacontrol.TheGPCprofilesofcis-PB34.7k-Si(OH)3-90andthelinearcis-PB34.7kstoredat25°Cfor60haregiveninFigure7a.Peakagraduallyshiftedtowardahigh-molecular-weightregionwithprolongingstoragetime,Thechemicalstructureoftheresultingcis-PB-Si(OH)3indicatingthattheformationoflargemacromoleculesviaproductswithdifferentmolecularweightsofcis-PBsegments11self-assemblyoflinearcis-PB34.7k-Si(OH)3-90precursorswascharacterizedbyHNMR,andthecorrespondingHoccurredduringstorage.Veryinterestingly,itcanbealsoNMRspectraoftheseresultingcis-PB-Si(OH)3withdifferentobservedfromFigure7athatpeakbwasgeneratedinthemolecularweightsofcis-PBsegmentsareshowninFigure6.Itregionofextremelyhigh-molecularweightanditscontentwas12.7%whenthestoragetimeoflinearcis-PB34.7k-Si(OH)3-90precursorswas60h.Inordertofurtherinvestigatethemechanismoftheformationofextremelylargemacromoleculesduringstorage,theGPCcurvesofbimodalmolecularweightdistributioninFigure7aweredividedintotwofractionsatpeaksaandbwiththeelutiontimeof26.9minasthedividingelutiontime.Itcanbeclearlyseenthattheabsoluteweight-averagemolecularweights(Mw)atpeaksaandbofcis-PB34.7k-Si(OH)3-90-60hweredeterminedtobeabout3.8timesand81.4timesoftheoriginallinearcis-PB34.7k,respectively.Theradiusofgyrations(Rg)atpeaka(Rg=27.2nm)andpeakb(Rg=29.0nm)forcis-PB34.7k-Si(OH)3-90storedfor60hwereabouttwicecomparedtothatofthelinearcis-PB34.7k(Rg=15.6nm).Figure6.Comparisonof1HNMRspectraof(a)cis-PB-Si(OH)-8.2k3Theseexperimentalresultssuggestthatthecore−shellcluster92,(b)cis-PB11.7k-Si(OH)3-98,and(c)cis-PB19.6k-Si(OH)3-95inorstar-shapedpolymerisformedbyself-assemblyoflinearcis-CDCl3.*chemicalshiftforwaterinCDCl3.PB-Si(OH)-90precursors,inwhich−Si(OH)aggregated34.7k33toformthehardcorebyhydrogenbondinginteractionandcis-canbeobservedfromFigure6thatthecharacteristicresonancePBsegmentsformedasarmsorthesoftshell.TheRg/Rhvalueof−CH3inthe−Si(OCH3)3functionalgroupsatachemical(Rhisthehydrodynamicradius)reflectsthearchitectureofthe51shiftof3.53ppmdisappeared,whichindicatesthatallofthepolymerchains.Therandomcoilsforminpolymersolution−Si(OCH3)3functionalgroupsincis-PB-Si(OMe)3couldbewhentheRg/Rhvaluesrangefrom1.50to1.78,andthesolidcompletelyhydrolyzedandtransformedto−Si(OH)3func-spheresforminpolymersolutionwhentheRg/Rhvalueis51tionalgroupsinthisprocess.Theamphiphiliccis-PB8.2k-0.774.WhentheRg/RhvalueissmallerthanthatoflinearSi(OH)3-92,cis-PB11.7k-Si(OH)3-98,andcis-PB19.6k-Si(OH)3-polymers,itindicatesthebranchedconformationof5195withhighfunctionalitycouldbesuccessfullyobtained.polymers.TheRg/Rhvalueofthelinearcis-PB34.7kwithoutSelf-AssemblyBehaviorofcis-PB-Si(OH)3.Thehydro-functionalgroupswasdeterminedtobe1.66,suggestingthegenbondinginteractionbetween−Si(OH)3attheendofcis-formationofatypicalrandomcoilofcis-PB34.7kinTHF.ThePB-Si(OH)3couldleadtotheself-assemblyofcis-PB-Si(OH)3averageRg/Rhvalueofcis-PB34.7k-Si(OH)3-90decreasedtoFigure7.(a)RIprofilesforcis-PB(M=47.4kg·mol−1,R=15.6nm,R/R=1.66)andcis-PB-Si(OH)-90storedat25°Cfor60h(peak34.7kwggh34.7k3a:M=180kg·mol−1,R=27.2nm,R/R=1.40;peakb:M=3860kg·mol−1,R=29.0nm,R/R=0.68,content=12.7%).(b)ComparisonofwgghwgghMark−Houwinkplotsforcis-PB34.7kandcis-PB34.7k-Si(OH)3-90storedat25°Cfor12,35,and60h.(c)ComparisonofMark−Houwinkplotsforcis-PB-Si(OH)withMofcis-PBsegmentsequalto34.7and87.4kg·mol−1storedat25°Cfor35h.3n2432https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
6Macromoleculespubs.acs.org/MacromoleculesArticleScheme3.Self-AssemblyProcessofLinearcis-PB-Si(OH)3PrecursorsFigure8.Solubilityofcis-PB-Si(OH)3inxylene.(a)Solublecis-PB32.4k-Si(OH)3-90storedat25°Cfor12h,(b)insolublecis-PB32.4k-Si(OH)3-90storedat25°Cfor6months,(c)solublecis-PB32.4k-Si(OH)3-90heatedat140°Cfor30min,and(d)insolublecis-PB32.4k-Si(OH)3-90storedat25°Cfor6months.1.40withprolongingthestoragetimefor60hatpeaka,valuesofcis-PB-Si(OH)3increasedfrom0.432to0.497withindicatingtheformationofbranchedpolymersviaself-increaseinMfrom34.7to87.4kg·mol−1demonstratesthatn,PBassemblyoflinearcis-PB34.7k-Si(OH)3-90precursors.OnthethenumberofarmsdecreasedwithincreasingMn,PBaccordingotherhand,itisinterestingtonotethattheaverageR/R52,53ghtothepublishedresults.Theself-assemblyprocessslowedvalueofcis-PB34.7k-Si(OH)3-90withstoragetimefor60hatdownwiththeincreasinglengthofcis-PBsegmentsduetothepeakbwasdeterminedtobe0.68,whichisclosetothesterichindrancefromlongpolymerchains.ItcanbeobservedtheoreticalRg/Rhvalueofsolidspheres.TheseexperimentalfromFigure7bthattheαvalueofcis-PB34.7k-Si(OH)3-90resultsfurtherdemonstratetheformationofthecore−shelldecreasedwithprolongingthestoragetimefrom12to60h.clusterorstar-shapedpolymerwithextremelyhighmolecularThecis-PB34.7k-Si(OH)3-90storedfor12hhadtwoαvaluesinweight(M=3860kg·mol−1).wtheregionoflowmolecularweight(α1=0.676)andintheAswellknown,theintrinsicviscosityofbranchedpolymersregionofhighmolecularweight(α2=0.402).Itmeansthattheislowerthanthatofthelinearpolymersatagivenmolecularstar-shapedpolymerwithmuchhighmolecularweightwasweightduetothedecreaseinthehydrodynamicradiusoftheformedduetohydrogenbondinginteractionintheregionof46branchedpolymerscomparedtothatoflinearpolymers.Thehighmolecularweightandthelinearcis-PB34.7k-Si(OH)3-90dependenceofintrinsicviscosityinTHFonthemolecularprecursorsstillretainedtherandomcoilconformationintheweightofthelinearcis-PB34.7kandcis-PB34.7k-Si(OH)3-90regionoflowmolecularweight.Therefore,theself-assemblyofstoredat25°CfordifferentstoragetimesaregiveninFigurelinearcis-PB34.7k-Si(OH)3-90precursorswasaslowandtime-7b.Thecurvesofintrinsicviscosityversusmolecularweightforconsumingprocess,andevencouldnotbecompletedwithincis-PB34.7k-Si(OH)3-90apparentlymovedtoahigh-molecular-12h.Itcanbefoundthatthereisonlyoneαvalueof0.432forweightdirectioncomparedtothatofthelinearcis-PB34.7kcis-PB34.7k-Si(OH)3storedfor35h,signifyingthatalmostallwithoutfunctionalgroups.Thefactthattheintrinsicviscositylinearcis-PB34.7k-Si(OH)3-90precursorsself-assembledtoformofcis-PB34.7k-Si(OH)3-90islowerthanthatofthelinearcis-astar-shapedstructurewithin35h.Veryimportantly,theαPB34.7katagivenmolecularweightindicatestheformationofabranchedtopologystructureofcis-PB-Si(OH)-90duetovalueofcis-PB34.7k-Si(OH)3-90furtherdecreasedto0.215on34.7k3prolongingthestoragetimeto60h,suggestingthatthetheself-assemblyoflinearcis-PB-Si(OH)3precursorsduringnumberofarmsincreasedwiththeprolongingstoragetime.storage.Ontheotherhand,ithasbeenrecognizedthattheThestar-shapedcis-PBgraduallyformedviaaslowself-conformationofpolymerscanbedeterminedbytheαvaluesintheMark−Houwinkequation.52,53Theαvaluesrangingassemblyprocess,andthenumberofarmsinthestar-shapedfrom0.5to0.8indicatetherandomcoilconformationoflinearpolymergraduallyincreasedwiththeprolongingstoragetime.polymers,andtheαvalueslowerthanthatoflinearpolymersTheself-assemblyprocessoflinearcis-PB-Si(OH)3precursorsindicatethebranchedconformationofpolymers.52Herein,thehasgonethroughthreestages.Inthefirststage,star-shapedαvaluesofthelinearcis-PB34.7kandlinearcis-PB87.4kwerepolymersformedviaprimaryself-assemblyfromsomeofthedeterminedtobe0.635and0.632,respectively,whichimplieslinearcis-PB-Si(OH)3precursors,andthemixtureofstar-thetypicalrandomcoilconformationoflinearcis-PBsoftshapedpolymersandlinearcis-PB-Si(OH)3precursorsformed.chainswithMrangingfrom34.7to87.4kg·mol−1inInthesecondstage,alllinearcis-PB-Si(OH)3precursorsself-nsolutions.Actually,theMn,PBoflinearcis-PB34.7k-Si(OH)3-90assembledtoformstar-shapedcis-PBs,andalmostnolinearcis-precursorswouldaffecttheself-assemblyprocess.AsshowninPB-Si(OH)3precursorswereleftinthepolymers.InthethirdFigure7c,thecis-PB-Si(OH)3withMn,PBof34.7and87.4kg·stage,theTHF-solublesupramolecularaggregateswithmol−1storedat25°Cfor35hwereselectedtoinvestigatetheextremelyhighmolecularweightcouldbeformedviainfluenceofMn,PBontheirself-assembly.Thefactthattheαsecond-orderself-assemblyofstar-shapedpolymers.Theself-2433https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
7Macromoleculespubs.acs.org/MacromoleculesArticleFigure9.(a)SEMimagesof(a1)cis-PB19.2k-Si(OH)3-52,(a2)cis-PB19.9k-Si(OH)3-72,(a3)cis-PB20.4k-Si(OH)3-88,and(a4)cis-PB20.9k-Si(OH)3-96.(b)Dependenceofinsolublecis-PB-Si(OH)3contentextractedbycyclohexaneonthefunctionalityofcis-PB-Si(OH)3(F‑Si(OH)3).Figure10.(a)Dependenceofstoragemodulus(G′)andlossmodulus(G″)onthefrequencyforcis-PB20.1kandcis-PB20.9k-Si(OH)3-96at25°C.(b)Dependenceofcomplexviscosity(η*)onthefrequencyforcis-PB20.1kandcis-PB20.9k-Si(OH)3-96at25°C.(c)Dependenceofcomplexviscosity(η*)onthetemperatureforcis-PB20.1kandcis-PB20.9k-Si(OH)3-96at1Hz.assemblyprocessfromlinearcis-PB-Si(OH)3precursorstooffracturedsurfacesofcis-PB-Si(OH)3,thecis-PB-Si(OH)3supramolecularaggregatesiselucidatedinScheme3.withdifferentfunctionalitiesstoredat25°Cfor6monthswereItisnecessarytofurtherinvestigatethesolubilityoftheextractedbycyclohexane3timestoremovethesolublecis-PBsupramolecularaggregateswithextremelyhighmolecularandthenfreeze-driedtoyieldinsolublecis-PB-Si(OH)3.Theweightviasecond-orderself-assemblyofstar-shapedpolymerscis-PB-Si(OH)3supramolecularnetworkwasbuiltbyhydrogenafterstorageforalongtime.AsshowninFigure8,thecis-PB-bondinginteractionandentanglementbetweenstar-shapedSi(OH)3storedat25°Cfor12hwascompletelydissolvedinpolymersonthebasisofthecriticalentanglementmolecular54xylene(Figure8a),whilethecis-PB-Si(OH)3storedat25°Cweight(Me)ofPBof4,500.AccordingtoFigure9a1,aloosefor6monthsjustswelledinxyleneevenafter7daysat25°Cstructurewithalargesizeofvoidswasfoundonthefractured(Figure8b).Theabove-swollenpolymerturnedtocompletelysurfacesofcis-PB19.2k-Si(OH)3-52supramolecularnetworkduedissolveinxylenebyheatingat140°Cfor30min,andthetotheremovalofthesolublecis-PBandcyclohexaneswolleninpolymersolutionbecametransparent(Figure8c).Afterthecis-PBsegments.Whileatightstructurewithasmallsizeofsolventevaporated,itwasthenstoredfor6months;however,voidswasfoundonthefracturedsurfacesofcis-PB20.9k-thecis-PB-Si(OH)3becameagaininsolubleduetotheSi(OH)3-96supramolecularnetwork,asshowninFigure9a4.reformationofsupramolecularaggregatesbyhydrogenItcanbeseenfromFigure9bthatthecontentsofinsolublecis-bondinginteraction(Figure8d).Theseinsolublesupra-PB-Si(OH)3extractedbycyclohexanewereconsistentwiththemolecularaggregatescouldbeagaincompletelydissolvedbyfunctionality(F‑Si(OH)3)measuredbyFTIRquantitativeheatingat140°Cfor30minduetothedissociationofanalysisaccordingtoeq2.Theseexperimentalresultsfurtherhydrogenbonds(Figure8c).Thetransitionbetweensupra-verifythatallofthelinearcis-PB-Si(OH)3precursorsmolecularaggregatesandlinearcis-PB-Si(OH)3precursorsparticipatedintheformationofinsolubleaggregatesviaself-exhibitreversiblebehaviorbecauseofhydrogenbondingassembly.Moreover,anothermeasurementhasbeendevelopedinteraction.Theamphiphiliccis-PB-Si(OH)3aggregatestoevaluatethefunctionalityofcis-PB-Si(OH)3bycis-PB-wouldhavepotentialapplicationinrecyclableelastomersandSi(OH)3storedforalongtimeandextractedbycyclohexaneself-healingmaterials.toremovethesolublecis-PB.Onthebasisoftheaboveobservation,onlypolymerchainsThefrequencysweepandtemperaturerampmeasurementswith−Si(OCH3)3couldparticipateintheformationofforcis-PB-Si(OH)3aggregatesstoredat25°Cfor6monthsaggregatesviaself-assembly,whilecis-PBwithoutfunctionalwerecarriedouttofurtherinvestigatethestabilityofthegroupscouldnotjointoformaggregates.Inordertoobtainsupramolecularnetwork.Thefrequencydependenceofstoragetheeffectofcis-PB-Si(OH)3functionalityonmicromorphologymodulus(G′)andlossmodulus(G″)forcis-PB20.1kandcis-2434https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
8Macromoleculespubs.acs.org/MacromoleculesArticlePB20.9k-Si(OH)3-96isshowninFigure10a.Itrevealsanelasticfilmsurfacesslightlyincreasedfrom112.5to118.5°withnetworkstateforcis-PB-Si(OH)-96asG′waslargerthanincreasingMwhenMwaslessthan8.2kg·mol−1,and20.9k3n,PBn,PBG″overthewholetextfrequencyrange,whileitrevealsaremainedalmostunchangedataround121.0°whenMn,PBwasviscoelasticliquidstateforcis-PBasG′wassmallerthanG″higherthan11.7kg·mol−1.TheWCAoftheoriginalcis-PB-20.1k55accordingtothepublishedresults.ItcanbeseenfromFigureSi(OH)3filmsurfaceincreasedwithincreasingMn,PBsincethe10bthatthecomplexviscosity(η*)ofcis-PB20.9k-Si(OH)3-96contentofhydrophilic−Si(OH)3groupsdecreasedwithansupramolecularaggregateswasmuchhigherthanthatoftheincreaseinMn,PB.Thesurfacesoforiginalcis-PB-Si(OH)3filmslinearcis-PB20.1kduetotheformationofjunctionpoints.Thewerehydrophobicsincethehydrophilic−Si(OH)3functionalrelationshipbetweenη*andtemperatureforcis-PB20.1kandcis-groupsweremoreeasilyattachedtotheglassandembeddedPB20.9k-Si(OH)3-96isshowninFigure10c.Theη*ofcis-PB-byhydrophobiccis-PBsoftsegments.Interestingly,thesurfaceSi(OH)3supramolecularaggregateswaslessdependentontheofthecis-PB-Si(OH)3filmchangedfromhydrophobictotemperatureandslightlydecreasedwithtemperatureincreasinghydrophilicafterwaterinductionwhenMn,PBwaslessthan8.2from25to100°C.However,theη*ofthelinearcis-PB20.1kkg·mol−1sincetheembeddedhydrophilic−OHfunctionaldecreasedsignificantlywithincreasingtemperature.Theη*ofgroupsin−Si(OH)3couldbeinducedtomovetowardthefilmcis-PB-Si(OH)3supramolecularaggregateswasmuchhighersurface.TheaverageWCAsofthecis-PB-Si(OH)3filmsurfacethanthatofthelinearcis-PB20.1kattemperaturesrangingfrommarkedlydecreasedfrom117.2to78.0°afterthewater25to100°C.Therefore,thesupramolecularnetworkofcis-PB-inductionwhenMrangedfrom4.2to8.2kg·mol−1.n,PBSi(OH)3aggregatesremainsstableduetotheintermolecularParticularly,theWCAofthecis-PB-Si(OH)3filmsurfacehydrogenbondingevenat100°C.decreasedfrom112.5°to67.7°afterthewaterinductionwhenWettabilityandSelf-HealingBehaviorofcis-PB-Mwas3.6kg·mol−1.AsshowninScheme4,hydrophobicn,PBSi(OH)3Films.Itisnecessarytoinvestigatethehydro-cis-PBsoftsegmentsmovedtotheinteriorafterwaterphilicity/hydrophobicityofthefilmsurfaceofamphiphiliccis-induction,whichexposedtheembeddedhydrophilic−OHPB-Si(OH)3carryinghydrophobiccis-PBsegmentsandfunctionalgroupsin−Si(OH)3tothefilmsurface.Thesurfacehydrophilic−Si(OH)3functionalgroups.Theoriginalfilmsofcis-PB-Si(OH)3filmsbecamehydrophilicduetotheofcis-PB-Si(OH)3withdifferentMn,PBvalueswerepreparedbyhydrophiliceffectof−Si(OH)3attheendofthepolymerspreadingthecis-PB-Si(OH)3solutiononaglasssurface,chains.TheWCAvalueofcis-PB-Si(OH)3filmsurfaceevaporatingthesolvent,andannealingat30°Cfor12h.Thedecreasedfrom81.1to67.7°withMn,PBdecreasingfrom8.2originalfilmsofcis-PB-Si(OH)3wereimmersedinhotwateratto3.6kg·mol−1afterthewaterinduction.However,theaverage50°Cfor3hunderstirringtorearrangethefunctionalgroupsWCAofthecis-PB-Si(OH)3filmsurfaceafterwaterinductionandchainsegments.TheeffectofMn,PBonWCAsoffilmwasabout4.2°lowerthanthatoftheoriginalfilmofcis-PB-surfacesofcis-PB-Si(OH)3sbeforeandafterwaterinductionSi(OH)3andwasstillhydrophobicwhenMn,PBwashigherareshowninFigure11.TheWCAsoforiginalcis-PB-Si(OH)3than11.7kg·mol−1becauseoflow−Si(OH)concentration3anddifficult−Si(OH)3migrationforthelongcis-PBsegments.ItcanbededucedfromtherelationshipbetweenMn,PBandWCAofthecis-PB-Si(OH)3filmsurfacethatthesurfaceofthecis-PB-Si(OH)3filmafterwaterinductiontransformsfromhydrophilicitytohydrophobicitywhenMn,PBwashigherthan9.1kg·mol−1.Therefore,thehydrophilicityorhydrophobicityofthesurfaceofcis-PB-Si(OH)3filmscouldbemediatedbychangingthemolecularweightofcis-PBsegmentsorbyrearrangingthefunctionalgroupsandchainsegments.Thehydrogenbondingbetweencis-PB-Si(OH)3aggregatescouldprovidetheself-healingpropertiesforcis-PB-Si(OH)3.Thefilmsofcis-PB8.2k,cis-PB8.2k-Si(OH)3-92,andcis-PB11.7k-Si(OH)3-98wereselectedtoevaluatetheself-healingproper-tiesofcis-PB-Si(OH)3.Thepolymerfilmswerecutintoseparatepiecesandacrossscratchwasmadeonthefilm.ThemovementprocessofcrossscratchcouldbedirectlyobservedFigure11.Relationshipbetweenthemolecularweightofcis-PBbyPCMinreal-time,andtheeffectsoffunctionalgroupsandsegments(Mn,PB)andwatercontactangleonthesurfaceofcis-PB-molecularweightonself-healingpropertiesofmaterialsareSi(OH)3filmsbeforeandafterwaterinduction.showninFigure12.Theedgeofthecrackinthecis-PB8.2kfilmScheme4.MechanismofWater-InducedSelf-Assemblyofcis-PB-Si(OH)3Films2435https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
9Macromoleculespubs.acs.org/MacromoleculesArticleFigure12.Self-healingprocessofwater-inducedpolymerfilmsat25°C.(a1−a4)cis-PB8.2k,(b1−b4)cis-PB8.2k-Si(OH)3-92,and(c1−c4)cis-PB11.7k-Si(OH)3-98.washardtoself-healat25°Cevenafter24hduetothetime-segmententanglement.Thesurfaceofcis-PB-Si(OH)3filmsconsumingcis-PBsegmentmotion.Surprisingly,thescaronbecamehydrophilicafterthewaterinductionwhenMn,PBwasthesurfaceoftheoriginalcis-PB-Si(OH)-92filmandthelessthan9.1kg·mol−1.TheWCAsofthecis-PB-Si(OH)film8.2k33surfaceofthecis-PB8.2k-Si(OH)3-92filmafterwaterinductionsurfacedecreasedfrom81.1to67.7°withMn,PBdecreasinggraduallydisappearedandwasnearlyinvisibleafter5hat25from8.2to3.6kg·mol−1afterwaterinduction.Thecis-PB-°C,asshowninFigure12b1−b4andFigureS4.TheSi(OH)3filmsexhibitedagoodself-healingproperty,andtheacceleratedself-healingprocessofcis-PB-Si(OH)3isattributedscardisappearedafter5hat25°CwhenMn,PBwas8.2kg·tothehydrogenbondinginteractionduetothe−Si(OH)mol−1.Theamphiphiliccis-PB-Si(OH)anditsaggregates33end-groupinthecis-PB-Si(OH)3.Aslightscaronthecis-wouldbeexpectedtobeappliedinrecyclableelastomersorPB11.7k-Si(OH)3-98filmdisappearedafter24hat25°C.Theself-healingelasticcoatingswithlow-temperatureresistance.decreaseof−Si(OH)3densitysignificantlyprolongedtheself-healingtime.Ontheotherhand,cis-PB11.7k-Si(OH)3-98with■ASSOCIATEDCONTENT−Si(OH)3functionalgroupswaseveneasiertoself-heal*sıSupportingInformationcomparedwithlower-molecular-weightcis-PB8.2k,althoughtheTheSupportingInformationisavailablefreeofchargeatincreasingmolecularweightsloweddowntheself-healing.https://pubs.acs.org/doi/10.1021/acs.macromol.0c02697.■CONCLUSIONSRepresentativeFTIRspectraofcis-PB/ethenyltrime-Thelivingcis-PBchainswithunimodalmolecularweightthoxy-silaneanddependenceofnV‑Si(OMe)3/nBdratiosondistributionandanddesiredMninaratherwiderangeof1.7toΔA1082/ΔA1654obtainedwithFTIRspectraofcis-PB/45.5kg·mol−1couldbesuccessfullysynthesizedduringtheethenyltrimethoxy-silane;molecularweight(Mn)ofcis-polymerizationprocessatdifferentmonomerconversions,byPBatdifferent(nBd0-nBd)/nNd0ratiosforcoordinationpolymerizationofbutadieneat60°C;1HNMRchangingthenBd0/nNd0molarratioorbysequentialadditionofanextramonomerafterconsumptionofmonomerateveryspectrumofethenyltrimethoxy-silaneinCDCl3;self-polymerizationstage.Aseriesofcis-PB-Si(OMe)3withhighhealingprocessoforiginalfilmsofcis-PB8.2k-Si(OH)3-92functionalityofaround95%anddifferentMn,PBvaluesrangingat25°C(PDF)from3.6to25.2kg·mol−1weresynthesizedviacopolymeriza-tionofthelivingcis-PBchainendswithV-Si(OMe)3bysetting■nV‑Si(OMe)3/nNd0of10at60°Cfor3h.Thecis-PB-Si(OH)3wasAUTHORINFORMATIONobtainedthroughcompletehydrolysisofcis-PB-Si(OMe)3byCorrespondingAuthorsmixingtheresultingpolymersolutioninhexanewithdeionizedHanZhu−StateKeyLaboratoryofChemicalResourcewaterat70°Cfor0.5h.Thestar-shapedcis-PBwasgraduallyEngineering,BeijingAdvancedInnovationCenterforSoftformedbyprolongingthestoragetimeduetothehydrogenMatterScienceandEngineering,BeijingUniversityofbondinginteractionfromthe−Si(OH)3hydrophilicterminalsChemicalTechnology,Beijing100029,China;Phone:+86-incis-PB-Si(OH)3inbulk,andthenumberofarmsincreased10-6442-8803;Email:zhuhan@mail.buct.edu.cnwiththedecreaseinthearmlengthofthestar-shapedcis-PB.YixianWu−StateKeyLaboratoryofChemicalResourceThesecond-orderself-assemblybetweenstar-shapedcis-PBsEngineering,BeijingAdvancedInnovationCenterforSoftoccurredtoformsupramolecularaggregatesaftertheprimaryMatterScienceandEngineering,BeijingUniversityofself-assembly.Thecis-PB-Si(OH)3formedastablesupra-ChemicalTechnology,Beijing100029,China;orcid.org/molecularnetworkbyhydrogenbondinginteractionandcis-PB0000-0002-3482-4564;Email:wuyx@mail.buct.edu.cn2436https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
10Macromoleculespubs.acs.org/MacromoleculesArticleAuthors(14)Carrow,B.P.;Nozaki,K.SynthesisofFunctionalPolyolefinsYingyingZheng−StateKeyLaboratoryofChemicalResourceusingCationicBisphosphineMonoxide-palladiumComplexes.J.Am.Engineering,BeijingAdvancedInnovationCenterforSoftChem.Soc.2012,134,8802−8805.MatterScienceandEngineering,BeijingUniversityof(15)Weng,W.;Zhong,L.S.;Jordan,R.F.CopolymerizationofEthyleneandVinylFluorideby(Phosphine-Sulfonate)Pd(Me)(py)ChemicalTechnology,Beijing100029,ChinaCatalysts.J.Am.Chem.Soc.2007,129,15450−15451.XianchenHuang−StateKeyLaboratoryofChemical(16)Leicht,H.;Göttker-Schnetmann,I.;Mecking,S.StereoselectiveResourceEngineering,BeijingAdvancedInnovationCenterCopolymerizationofButadieneandFunctionalized1,3-DieneswithforSoftMatterScienceandEngineering,BeijingUniversityofNeodymium-BasedCatalysts.Macromolecules2017,50,8464−8468.ChemicalTechnology,Beijing100029,China(17)Szwarc,M.‘Living’Polymers.Nature1956,178,1168−1169.Completecontactinformationisavailableat:(18)Tanabe,M.;Vandermeulen,G.W.;Chan,W.Y.;Cyr,P.W.;Vanderark,L.;Rider,D.A.;Manners,I.PhotocontrolledLivinghttps://pubs.acs.org/10.1021/acs.macromol.0c02697Polymerizations.Nat.Mater.2006,5,467−470.(19)Hadjichristidis,N.;Pitsikalis,M.;Pispas,S.;Iatrou,H.NotesPolymerswithComplexArchitecturebyLivingAnionicPolymer-Theauthorsdeclarenocompetingfinancialinterest.ization.Chem.Rev.2001,101,3747−3792.(20)Tasdelen,M.A.;Kahveci,M.U.;Yagci,Y.TelechelicPolymers■ACKNOWLEDGMENTSbyLivingandControlled/livingPolymerizationMethods.Prog.Polym.Sci.2011,36,455−567.ThisworkwassupportedbytheNationalNaturalScience(21)Zhu,H.;Zuo,X.L.;Zhang,S.;Ma,X.L.;Liu,Y.F.;Wu,Y.X.FoundationofChina(NSFC)forprojectsNos.21634002,ProgressinRareEarthCatalystsandtheirUseintheSynthesisof51790501,51521062,andtheFundamentalResearchFundsRubberandElastomer.Chin.Polym.Bull.2014,5,65−87.fortheCentralUniversities(XK1802-2,XK1802-1).(22)Kwag,G.UltraHighcisPolybutadienebyMonomericNeodymiumCatalystandItsMechanicalandDynamicProperties.■REFERENCESMacromol.Res.2010,18,533−538.(23)Pires,N.M.T.;Ferreira,A.A.;deLira,C.H.;Coutinho,P.L.(1)Goring,P.D.;Mortonb,C.;Scott,P.End-functionalPolyolefinsA.;Nicolini,L.F.;Soares,B.G.;Coutinho,F.M.B.PerformanceforBlockCopolymerSynthesis.DaltonTrans.2019,48,3521−3530.EvaluationofHigh-cis1,4-Polybutadienes.J.Appl.Polym.Sci.2006,(2)Hu,Y.L.CatalystsforOlefinCoordinationPolymerizationand99,88−99.PolymerizationReaction.Petrochem.Thechno.2017,46,651−659.(24)Chen,W.Q.;Wang,F.S.SyntheticRubbersPreparedby(3)Lopez,R.G.;D’Agosto,F.;Boisson,C.SynthesisofWell-definedLanthanideCoordinationCatalyst.Sci.ChinaSer.B.Chem.2009,52,PolymerArchitecturesbySuccessiveCatalyticOlefinPolymerizationandLiving/ControlledPolymerizationReactions.Prog.Polym.Sci.1520−1543.2007,32,419−454.(25)Anwander,R.;Fischbach,A.;Friebe,L.;Nuyken,O.;Obrecht,(4)Zhang,Y.J.;Li,H.Y.;Dong,J.Y.;Hu,Y.L.SynthesisandW.NeodymiumBasedZieglerCatalysts-FundamentalChemistry.ApplicationsofChainEndFunctionalizedPolyolefins.Prog.Chem.Adv.Polym.Sci.2006,204,1−154.2014,26,110−124.(26)Tanuchi,M.;Tomita,I.;Yoshida,Y.;Endo,T.Block(5)Zhou,Q.Z.;Jie,S.Y.;Li,B.G.PreparationofHydroxyl-CopolymerizationofAlleneDerivativeswith1,3-ButadienebyLivingTerminatedPolybutadienewithHighcis-1,4Content.Ind.Eng.Chem.CoordinationPolymerizationwithπ-AllylnickelCatalyst.JPolym.Sci.Res.2014,53,17884−17893.A:Polym.Chem.1999,37,3916−3921.(6)Lucas,F.;Peruch,F.;Carlotti,S.;Deffieux,A.;Leblanc,A.;(27)Deming,T.J.;Novak,B.M.;Ziller,J.W.LivingPolymerizationBoisson,C.SynthesisofDihydroxyPoly(ethylene-co-butadiene)viaofButadieneatBothChainEndsviaaBimetallicNickelInitiator.MetatheticalDepolymerization:KineticandMechanisticAspects.PreparationofHydroxytelechelicPoly(butadiene)andSymmetricPolymer2008,49,4935−4941.Poly(isocyanide-b-butadiene-b-isocyanide)ElastomericTriblockCo-(7)Zheng,J.;Lin,Y.C.;Liu,F.;Tan,H.Y.;Wang,Y.H.;Tang,T.polymers.J.Am.Chem.Soc.1994,116,2366−2374.ControlledChain-ScissionofPolybutadienebytheSchwartz(28)Nath,D.C.D.;Fellows,C.M.;Shiono,T.KineticFeaturesofHydrozirconation.Chem.−Eur.J.2013,19,541−548.theCobaltDihalide/MethylaluminoxaneCatalyticSystemin1,3-(8)Martinez,H.;Miró,P.;Charbonneau,P.;Hillmyer,M.A.;ButadienePolymerization.Macromol.Res.2006,14,338−342.Cramer,C.J.SelectivityinRing-OpeningMetathesisPolymerization(29)Ji,X.Z.;Jiang,S.F.;Li,Y.L.;Ouyang,J.“Living”ofZ-CyclooctenesCatalyzedbyaSecond-generationGrubbsPolymerizationofBdbyRare-earthCatalyst.Chin.Polym.Bull.Catalyst.ACSCatal.2012,2,2547−2556.1985,2,120−127.(9)Ying,W.;Pan,W.J.;Gan,Q.;Jia,X.Y.;Grassi,A.;Gong,D.(30)Ozawa,Y.;Takata,T.SynthesisandPropertyofEnd-PreparationandPropertyInvestigationofChainendFunctionalizedFunctionalizedPoly(cis-1,4-butadiene)anditsApplicationtoRubbercis-1,4polybutadienesviaDe-polymerizationandCrossMetathesisofCompound.J.Appl.Polym.Sci.2019,136,No.47985.cis-1,4polybutadienes.Polym.Chem.2019,10,3525−3534.(31)Tanaka,R.;Sone,T.;Tadaki,T.MethodforProducing(10)Daigle,J.C.;Piche,L.;Arnold,A.;Claverie,J.P.ProbingtheModifiedConjugatedDienePolymerandRubberComposition.RegiochemistryofAcrylateCatalyticInsertionPolymerizationviaEP14796982004.CyclocopolymerizationofAllylAcrylateandEthylene.ACSMacro.(32)Qin,Z.Q.;Mccauley,K.M.;Luo,S.ProcessfortheLett.2012,1,343−346.PreparationofHigh-cisPolydienes.WO2013/1305222013.(11)Anselment,T.M.;Anderson,C.E.;Rieger,B.;Boeddinghaus,(33)Ozawa,Y.;Miller;Jerrold,H.;Masaki,K.;Morita,K.;Fujimaki,M.B.;Fassler,T.F.SynthesisofNon-symmetricallySulphonatedT.;Ohmura,T.;Sone,T.;Hattori,I.Functionalizedhighcis-1,4PhosphineSulphonatebasedPd(II)CatalystSaltsforOlefinpolybutadienePreparedusingNovelFunctionalizedAgents.WO02/PolymerisationReactions.DaltonTrans.2011,40,8304−8313.386152002.(12)Zhang,M.;Yuan,X.P.;Wang,L.;MikeChung,T.C.;Huang,(34)Kwag,G.;Kim,A.;Lee,S.MethodofPreparationofSiloxane-T.Z.;deGroot,W.SynthesisandCharacterizationofWell-ControlledfunctionalizedHigh1,4-cisPolybutadiene.US200201378432002.IsotacticPolypropyleneIonomersContainingAmmoniumIon(35)Ozawa,Y.;Miller;Jerrold,H.;Masaki,K.;Fujimaki,T.;Sone,Groups.Macromolecules2014,47,571−581.T.;Hattorl,I.;Morita,K.ModifiedPolymersPreparedwith(13)Zou,C.;Chen,C.L.Polar-Functionalized,Crosslinkable,Self-Lanthanide-basedCatalysts.WO01/346582001.HealingandPhotoresponsivePolyolefins.Angew.Chem.,Int.Ed.(36)Friebe,L.;Nuyken,O.;Windisch,H.;Obrecht,W.Polymer-2020,59,395−402.izationof1,3-ButadieneInitiatedbyNeodymiumVersatate/2437https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
11Macromoleculespubs.acs.org/MacromoleculesArticleDiisobutylaluminiumHydride/EthylaluminiumSesquichloride:Ki-(52)Murima,D.;Pasch,H.ComprehensiveBranchingAnalysisofneticsandConclusionsAbouttheReactionMechanism.Macromol.Star-shapedPolystyrenesusingaLiquidChromatography-basedChem.Phys.2002,203,1055−1064.Approach.Anal.Bioanal.Chem.2019,411,5063−5078.(37)Friebe,L.;Windisch,H.;Nuyken,O.;Obrecht,W.Polymer-(53)Podzimek,S.;Vlcek,T.CharacterizationofBranchedPolymersizationof1,3-ButadieneInitiatedbyNeodymiumVersatate/bySECCoupledwithaMultiangleLightScatteringDetector.II.DataTriisobutylaluminum/EthylaluminumSesquichloride:ImpactoftheProcessingandInterpretation.J.Appl.Polym.Sci.2001,82,454−460.AlkylaluminumCocatalystComponent.J.Macromol.Sci.PartA2004,(54)Zhu,X.C.ApplicationofEntanglementIdeaandInter-41,245−256.penetratingPolymericStructureinIonExchangeResinsSynthesis.Ion(38)Wang,F.;Liu,H.;Zheng,W.J.;Guo,J.;Zhang,C.Y.;Zhao,L.ExchangeandAdsorption1986,4,59−63.(55)Nevejans,S.;Ballard,N.;Fernández,M.;Reck,B.;García,S.J.;P.;Zhang,H.;Hu,Y.M.;Bai,C.X.;Zhang,X.Q.Fully-reversibleandAsua,J.M.TheChallengesofObtainingMechanicalStrengthinSelf-Semi-reversibleCoordinativeChainTransferPolymerizationsof1,3-healingPolymersContainingDynamicCovalentBonds.PolymerbutadienewithNeodymium-basedCatalyticSystems.Polymer2013,2019,179,No.121670.54,6716−6724.(39)Fan,C.L.;Bai,C.X.;Cai,H.G.;Dai,Q.Q.;Zhang,X.Q.;Wang,F.S.PreparationofHighcis-1,4PolyisoprenewithNarrowMolecularWeightDistributionviaCoordinativeChainTransferPolymerization.J.Polym.Sci.,PartA:Polym.Chem.2010,48,4768−4774.(40)Xu,H.;Tu,J.;Xiang,G.F.;Zhang,Y.;Guo,X.D.AThermosettingPolyurethanewithExcellentSelf-HealingPropertiesandStabilityforMetalSurfaceCoating.Macromol.Chem.Phys.2020,221,No.2000273.(41)Tu,J.;Xu,H.;Liang,L.;Li,P.Y.;Guo,X.D.Preparationofhighself-healingefficientcrosslinkHTPBadhesiveforimprovingdebondingofpropellantinterface.NewJ.Chem.2020,44,19184−19191.(42)Chen,K.;Ren,Q.B.;Li,J.J.;Chen,D.F.;Li,C.X.Ahighlystretchableandself-healinghydroxyterminatedpolybutadieneelas-tomer.J.SaudiChem.Soc.2020,24,1034−1041.(43)Ducruet,N.;Delmotte,L.;Schrodj,G.;Stankiewicz,F.;Desgardin,N.;Vallat,M.F.;Haidar,B.EvaluationofHydroxylTerminatedPolybutadiene-IsophoroneDiisocyanateGelFormationDuringCrosslinkingProcess.J.Appl.Polym.Sci.2013,128,38194.(44)Zhu,H.;Chen,P.;Yang,C.F.;Wu,Y.X.Neodymium-BasedCatalystfortheCoordinationPolymerizationofButadiene:FromFundamentalResearchtoIndustrialApplication.Macromol.React.Eng.2015,9,453−461.(45)Wang,J.;Wu,Y.X.;Xu,X.;Zhu,H.;Wu,G.Y.Anactivatedneodymium-basedcatalystforstyrenepolymerization.Polym.Int.2005,54,1320−1325.(46)Scholte,T.G.;Meijerink,N.L.J.;Schoffeleers,H.M.;Brands,A.M.G.Mark-HouwinkEquationandGPCCalibrationforLinearShort-ChainBranchedPolyolefins,IncludingPolypropyleneandEthylene-PropyleneCopolymers.J.Appl.Polym.Sci.1984,29,3763−3782.(47)Shen,Z.;Song,X.Y.;Xiao,S.X.;Yang,J.P.;Kan,X.L.CoordinationCopolymerizationofButadieneandisoprenewithRare-earthChloride-alcohol-aluminumtrialkylCatalyticSystem.Sci.ChinaSer.B.1982,25,124−136.(48)Yang,S.-X.;Fan,Z.Y.;Zhang,F.Y.;Li,S.H.;Wu,Y.X.FunctionalizedCopolymersofIsobutylenewithVinylPhenol:Synthesis,Characterization,andProperty.Chin.J.Polym.Sci.2019,37,919−929.(49)Ando,T.;Kato,M.;Kamigaito,M.;Sawamoto,M.LivingRadicalPolymerizationofMethylMethacrylatewithRutheniumComplex:FormationofPolymerswithControlledMolecularWeightsandVeryNarrowDistributions.Macromolecules1996,29,1070−1072.(50)Tanaka,R.;Yuuya,K.;Sato,H.;Eberhardt,P.;Nakayama,Y.;Shiono,T.Synthesisofstereodiblockpolyisopreneconsistingofcis-1,4andtrans-1,4sequencesbyusinganeodymiumcatalyst:changeofthestereospecificitytriggeredbyanaluminumcompound.Polym.Chem.2016,7,1239−1243.(51)Xie,D.H.;Xu,K.;Bai,R.K.;Zhang,G.Z.StructuralEvolutionofMixedMicellesDuetoInterchainComplexationandSegregationInvestigatedbyLaserLightScattering.J.Phys.Chem.B2007,111,778−781.2438https://dx.doi.org/10.1021/acs.macromol.0c02697Macromolecules2021,54,2427−2438
此文档下载收益归作者所有