《Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart - Shah et al. -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/jprArticleMyocardialInfarctionInducesCardiacFibroblastTransformationwithinInjuredandNoninjuredRegionsoftheMouseHeartHaisamShah,*AlisonHacker,DylanLangburt,MichaelDewar,MeghanJ.McFadden,HangjunZhang,UrosKuzmanov,Yu-QingZhou,BilalHussain,FahadEhsan,BorisHinz,AnthonyO.Gramolini,*andScottP.Heximer*CiteThis:J.ProteomeRes.2021,20,2867−2881ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Heartfailure(HF)isassociatedwithpathologicalremodelingofthemyocardium,includingtheinitiationoffibrosisandscarformationbyactivatedcardiacfibroblasts(CFs).AlthoughearlyCF-dependentscarformationhelpspreventcardiacrupturebymaintainingtheheart’sstructuralintegrity,ongoingdepositionoftheextracellularmatrixintheremoteandinfarctregionscanreducetissuecompliance,impaircardiacfunction,andaccelerateprogressiontoHF.Inourstudy,weconductedmassspectrometry(MS)analysistoidentifydifferentiallyalteredproteinsandsignalingpathwaysbetweenCFsisolatedfrom7dayshamandinfarctedmurinehearts.Surprisingly,CFsfromboththeremoteandinfarctregionsofinjuredheartshadawidenumberofsimilarlyalteredproteinsandsignalingpathwaysthatwereconsistentwithfibrosisandactivationintopathologicalmyofibroblasts.Specifically,proteinsenrichedinCFsisolatedfromMIheartswereinvolvedinpathwayspertainingtocell−cellandcell−matrixadhesion,chaperone-mediatedproteinfolding,andcollagenfibrilorganization.Theseresults,togetherwithprincipalcomponentanalyses,providedevidenceofglobalCFactivationpostinjury.Interestingly,however,directcomparisonsbetweenCFsfromtheremoteandinfarctregionsofinjuredheartsidentified15differentiallyexpressedproteinsbetweenMIremoteandMIinfarctCFs.Elevenoftheseproteins(Gpc1,Cthrc1,Vmac,Nexn,Znf185,Sprr1a,Specc1,Emb,Limd2,Pawr,andMcam)werehigherinMIinfarctCFs,whereasfourproteins(Gstt1,Gstm1,Tceal3,andInmt)werehigherinMIremoteCFs.Collectively,ourstudyshowsthatMIinjuryinducedglobalchangestotheCFproteome,withthemagnitudeofchangereflectingtheirrelativeproximitytothesiteofinjury.KEYWORDS:cardiovasculardisease,cardiacfibroblasts,myofibroblasts,cardiacfibrosisandremodeling,myocardialinfarction,massspectrometryDownloadedviaBUTLERUNIVonMay16,2021at16:38:17(UTC).■INTRODUCTIONFollowingMI,theinitialmyofibroblast-dependentformationoffibroticscartissuepreservesthestructuralintegrityoftheHeartdiseaseisoftenassociatedwithpathologicalremodelingmyocardium,preventstheriskofcardiacrupture,andisaofthemyocardium,reductionofhearttissuecompliance,and181−3largelycardioprotectiveprocess.ChronicdepositionandSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.acceleratedprogressiontoheartfailure(HF).ThesematurationofECMcomponentscancontributetoprogressiveprocessesaremediated,inpart,bycardiacfibroblasts(CFs).4,5Inthehealthyheart,theCFisanabundantandtissuestiffening,noncompliantscarformation,andcardiac7,19dysfunction.Thisprocess,knownascardiacfibrosis,essentialcelltypethatplaysanimportantroleincardiacdevelopmentandthemaintenanceofextracellularmatrixprovokesfurtherpathologicalchangesthatculminateinleft(ECM)andelectrophysiologicalhomeostasis.6Duringische-ventricularstrain,chamberdilatation,cardiomyocytehyper-micinjurieslikeamyocardialinfarction(MI),however,trophy,cellularapoptosis,andultimately,thedevelopmentofresidentCFsdifferentiateintoanactivemyofibroblastHF.Despitetheirknownpathophysiologicalimportanceinstate.7−10WhilequiescentCFsarecharacterizedbytheheartdisease,theCFremainsrelativelyuncharacterized.expressionofseveralmarkers,includingvimentinandtype1Likewise,veryfewstudieshavecharacterizedtherolesofcollagen,themyofibroblastexhibitsincreasedlevelsofα-11Received:February3,2021smoothmuscleactin(α-SMA)-containingstressfibers.Additionally,inthisactivatedstate,myofibroblastsbegintoPublished:March31,2021secreteanddepositexcessiveamountsofECMproteins,12−14includingcollagenandfibronectin.ThesechangesintheCFphenotypefollowinganinjurycanultimatelycontributeto15−17thedevelopmentofscartissueintheheart.©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jproteome.1c000982867J.ProteomeRes.2021,20,2867−2881
1JournalofProteomeResearchpubs.acs.org/jprArticledifferentCFpopulationsafteracuteischemicinjuryandmLdispaseII(SigmaCat#:D4693)inDulbecco’sphosphate-throughoutthedevelopmentofHF.Lastly,therearefewbufferedsaline(dPBS)supplementedwith0.9mmol/LCaCl2clinicalinterventionsthatspecificallytargetmyofibroblastfor45minat37°Cwithperiodicmixingevery15min.Thefunctiontopromoteimprovedcardiacfunctionfollowingandigestwasthenfilteredthrougha70μmmeshinto25mLofischemicinsult.1×dPBS.Next,thedigestwascentrifugedfor7minat500gatExperimentalanimalmodelsofMIareaneffectivetoolfor4°C.Resultingpelletswereresuspendedinfibroblastmedia,accuratelystudyingthespatiotemporalchangesofCFcontaining1%L-glutamine(ThermoCat#:25030-081),1%populationsduringcardiacrepair.Specifically,bothMIinjurypenicillin−streptomycin(ThermoCat#:15140-122),and10%andsurgicalligationoftheleftanteriordescendingcoronaryfetalbovineserum(ThermoCat#10437-028)inDulbecco’sartery(LAD)leadstotherapiddeathofcardiomyocytesinthemodifiedEagle’smedia(ThermoCat#:11965-092),andischemicleftventricle(LV)andtheprogressiveformationofplatedfor2honastandardtissueculture-treatedPetridish.distinctmyocardialzones,namely,theinfarctandremoteFollowingthe2hpreplate,oldmediawasaspiratedand20−22regions.Theinfarctzone,definedastheregiondirectlyreplacedwithfreshfibroblastmedia.Themediawasaffectedbytheischemicinsult,mainlyundergoesreplacementsubsequentlyreplacedeveryotherdayuntiltheendofthefibrosis,whichoccursinresponsetothelossofcardiomyocytesexperiment.Allexperimentswereconducted1,3,or5days23,24andviabletissue.Thisreplacementfibrosisinitiallyaftertheinitialpreplate.preventsventricularrupture,butifleftunmanaged,itcanImmunoblottingcontributetothedevelopmentofanECM-rich,noncompliantCFswerelysedwithRIPAlysisbuffer,containing50mMTris-scarthatworsenscardiacfunctionovertime.Incontrast,theHCl(pH8.0),150mMNaCl,1%NP-40(BioChemikaCat#remoteregion,whichisdefinedasthenonischemicregion,74385),0.5%sodiumdeoxycholate(SigmaCat#:D6750),visuallyresemblesthehealthymyocardium,butstilldevelops25−280.5%sodiumdodecylsulfate(SDS),1%sigmaproteasereactivefibrosis.Interestingly,studiessuggestthatinhibitor,andgentlesonication.Proteinconcentrationwasreplacementfibrosisintheinfarctzoneandreactivefibrosisdeterminedusingthebicinchoninicacidassay(BCA)intheremote,nonischemicareaarebothcriticalregulatorsof(ThermoCat#:23227).Equalamountsofproteinwerechronic,pathologicalcardiacremodeling,progressivecardiac29−31separatedbythemolecularweightviagelelectrophoresis.dysfunction,andthedevelopmentofHFpost-MI.ProteinswerethentransferredtoanitrocellulosemembraneTherefore,webelieveitisimportanttostudythemolecular(BioRadCat#1620115)andblockedfor1hwithTris-characteristicsandphenotypicdifferencesbetweenCFsinthebufferedsaline0.1%Tween20(TBS-T)in5%skimmilkremoteandinfarctregionstoidentifyhowbothpopulations(BioShopCat#:SKI400).Primaryantibodiesweredilutedcontributetopost-MIcardiacremodeling.withTBS-Tcontaining5%bovineserumalbumin(BioShop■Cat#ALB001)andincubatedwithmembranesovernightat4MATERIALSANDMETHODS°C.Theprimaryantibodiesusedincludeanti-vimentin(CellExperimentalAnimalssignalingCat#:5741S,1:1000dilution)andanti-α-SMA(AbcamCat#:ab5694,1:1000dilution).MembraneswereAllanimalworkwasconductedunderguidelinesestablishedbywashedinTBS-TfollowedbyincubationwiththehorseradishtheCanadianCouncilonAnimalCare(CCAC).Allperoxidase-linkedsecondaryantibody(CellsignalingCat#:experimentalprotocolswereapprovedbytheInstitutional7074S),diluted1:3000withTBS-Tin5%skimmilk,for1hatAnimalCareandUseCommitteeattheUniversityofTorontoroomtemperature.ThesignalwasdetectedusingtheandconductedinaccordancewithCanadiananimalprotectionSuperSignalWestPicochemiluminescentsubstrate(Thermolaws.Allanimalswerehousedunderstandard14:10hlight−Cat#:32106).darkcycleswithadlibitumaccesstowaterandchow.Amixture(roughly1:1)ofmaleandfemale10−16weekoldImmunofluorescenceadultC57Bl/6micewereusedforthestudiesdescribedbelow.CFswereisolatedfromC57Bl/6miceandinitiallyplacedonaLeftAnteriorDescending(LAD)CoronaryArteryLigationstandardtissueculture-treatedPetridishfor2h.Followingthe(SurgicallyInducedMI)2hpreplate,cellsweretransferredtoacollagen-coated,glass-bottomMatTekPetridish(MatTekCat#:P35GCol-1.5-14C)MIwasinducedusingsurgicalligation,aspreviously32andculturedfor1,3,or5days.Sampleswerefixedin4%described.Briefly,a7-0Prolenesuturewaspassedthroughparaformaldehyde(PFA)(SigmaCat#:P6148)in1×calciumthemyocardiumbeneaththeleftanteriordescendingcoronaryandmagnesium-freephosphate-bufferedsaline(PBS)for10arteryapproximately2mmbelowtheleftatriumandtheminatroomtemperatureandpermeabilizedonicewith0.1%suturecutandtiedofftocompletethearteryligation.Sham-TritonX-100(BioShopCat#:TRX777)in1×PBSfor10min.operatedanimalsunderwentthefullsurgicalprocedureexceptNext,thesampleswereblockedfor1hatroomtemperaturethe7-0suturewasnottiedoffafterpassingundertheLAD.Allwith5%bovineserumalbuminin1×PBS,andincubatedwithmicewereallowedtorecoverfor1week(7days)beforetheprimaryantibodyovernightat4°C.Theprimaryphenotypingandfibroblastisolationprocedureswerecarriedantibodiesusedincludeanti-vimentin(CellsignalingCat#:out.5741S,1:100dilution)andanti-α-SMA-Cy3(SigmaCat#:AdultMurineCFIsolationandCultureC6178,1:100dilution).Thefollowingday,sampleswereOurCFisolationprotocolwasadaptedfromastrategyusedbyincubatedinthedarkwithasecondaryfluorophore-conjugated33Pintoetal.(2016).Specifically,thewholeheartofanadultantibodyfor1hatroomtemperature(ifrequired).TheC57Bl/6mousewasexcised,andtheatriaandatrioventricularsecondaryantibodiesusedincludegoatantirabbitIgGAlexavalvesweresurgicallyremoved.TheventriclesandseptumFluorophore488(ThermoCat#:A11034,1:1000dilution).weremincedinto1mmpiecesanddigestedwith2mg/mLCellsweresubsequentlytreatedwith2μg/mLHoechst33342collagenasetypeII(WorthingtonCat#:LS004176)and2mg/for10minatroomtemperaturetovisualizenuclei.Imaging2868https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
2JournalofProteomeResearchpubs.acs.org/jprArticlewasperformedusinganOlympusconfocalmicroscoperesuspendedin120μLof100mMABC.AfractionoftheFV3000.sampleswasusedforproteinquantificationusingBCA.Approximately6μgofproteinfromeachsamplewasEchocardiographyDataAcquisitiontransferredtoanewEppendorftubeandtoppedupto100Ahigh-frequencyultrasoundimagingsystem(Vevo770orμLwith100mMABC.Proteinswerereducedwith5mMVevo3100)(FUJIFILMVisualSonicsInc.)witha25or30dithiothreitol(DTT)at55°Cfor30minandalkylatedintheMHztransducerwasusedtoevaluatethestructureandcardiacdarkwith15mMiodoacetamideatroomtemperaturefor30functionof7dayshamandpost-MImice.Theprocedureusedmin.Calciumchloride(2mM)wasaddedwith1μgofthe34hasbeenpreviouslydescribedindetail.One-dimensionalMS-gradetrypsin/Lys-Cmix(Promega).Digestionwas(M-mode),two-dimensional(B-mode),andpulse-waveallowedtoproceedovernightat37°Cbeforeanother0.5μgDopplerwererecorded.TheLVwallthicknessatthemiddleoftrypsin/Lys-Cwasaddedandallowedtoproceedforansegment,LVend-diastolicdiameter(LVEDD),andLVend-additional3h.Digestionwasquenchedwiththeadditionofsystolicdiameter(LVESD)weremeasuredinmm.TheLV0.1%formicacid,andtheresultingpeptideswereisolatedandfractionalshortening(LVFS),fractionalareachange(FAC),desaltedusingOMIXC18solid-phaseextractiontips(Agilent)strokevolume(SV),heartrate(HR),andcardiacoutput(CO)asperthemanufacturer’sinstruction.Samplesweredriedinawerealsomeasured.vacuumconcentratorandstoredat−80°CuntilliquidEchocardiographyDataAnalysischromatography−massspectrometry(LC-MS)analysis.Throughtheleftparasternalacousticalwindow,theLVinitsLiquidChromatography−MassSpectrometryAnalysislongaxisviewwasvisualizedusingtwo-dimensional(B-mode)CFswereanalyzedintechnicalduplicateonanEASY1200-imagingtoobservetheoverallmorphologyoftheLV.UsinganLCcoupledtoaQExactivePlusmassspectrometerwithafunctionmodalitycalledECG-basedkilohertzvisualizationNanosprayFlexIonSource(ThermoScientific).Dried(EKV),acineloopofLVwithaframerateupto1KHzwaspeptideswerereconstitutedin24μLof5%(v/v)formiccreatedforonecardiaccycle,andtheend-diastolicandpeak35acidinhigh-performanceliquidchromatography(HPLC)-systolicframeswereidentified.TheendocardiumoftheLVgradewaterand5μLwasloadedontoa10cm,75μmi.dwastracedtomeasuretheend-diastolicareaandpeaksystolicanalyticalcolumn(Reprosil-PurBasicC18,3μm,100Å;Dr.area.TheFACwascalculatedasthedifferencebetweentheMaischHPLC,Ammerbuch,Baden-Württemberg,Germany)end-diastolicareaandpeaksystolicarea,dividedbytheend-andseparatedusingalinear90mingradientfrom2−43%Batdiastolicarea,andexpressedasapercentage.Furthermore,theaflowrateof250nL/min,whereAwas0.1%formicacidinLVwasdividedintothreeequalsegmentsbetweentheapexHPLC-gradewaterandBwas80%acetonitrilewith0.1%andmitralorifice(e.g.,theapical,middle,andbasalsegments)formicacid.DatawasacquiredinTop10data-dependentmodeinthelongitudinalaxisview.UndertheguidanceofB-modewithonefullMS1scanatR=70000from400−1500m/zimaging,M-moderecordingwasmadefromthecenterofeachwithanautomaticgaincontrol(AGC)targetof1E6andasegment.TheM-modetracefromthemiddlesegmentwasmaximuminjectiontimeof100ms.TheMS1surveyscanwasusedtomeasuretheleftventricularanteriorandposteriorwallfollowedby10data-dependentMS2scansatR=17500,anthicknessesandchamberdimensionsatpeaksystoleandend-isolationwindowof1.3m/z,AGCof5E5,andamaximumdiastole.Fortheapicalandbasalsegments,onlytheLVESDinjectiontimeof55ms,usinganormalizedhigh-energyandLVEDDweremeasured.TheLVFSwascalculatedasthecollision-induceddissociation(HCD)settingof28.Only2+,differencebetweenLVEDDandLVESD,dividedbythe3+,4+,and5+precursorchargestateswereincluded,withtheLVEDD,foreachofthethreesegments.Finally,thediameterdynamicexclusionsetto30s.TechnicalreplicateswereoftheaorticannulusandtheDopplerflowvelocityatthecombinedandRAWfilessearchedusingtheMaxQuantmiddleoftheaorticorificeweremeasuredtocalculatetheLV,version1.6.0.1againsttheUniProtmouseproteomesequenceSV,andCOforevaluatingtheglobalfunctionoftheLV.database(updatedAugust22,2017)withtheprecursormassSamplePreparationforMassSpectrometrytoleranceat6ppmandMSMStoleranceat20ppm.ToRemoteandinfarcttissuefromshamcontrolandMI-operatedminimizemissingquantitativevalues,the“matchbetweenC57Bl/6micewereisolated7daysaftertheinitialsurgeryandruns”featurewasenabled.Carbamidomethylationofcysteinedigested,asdescribedearlier.TogeneratesufficientCFproteinwasincludedasafixedmodificationandvariablemodificationslysatesamplesforanalysis,eachbiologicalreplicatecontainedwereselectedformethionineoxidation,proteinamino-pooledsamplesoftheremoteorinfarctregiontissuefrom4toterminalacetylation,andasparagineandglutaminedeamida-5mice/samples.CD31+endothelialcellsandCD45+tion.Thefalsediscoveryrate(FDR)wassetto1%usingaleukocyteswereremovedusingamagneticcellsorter(Miltenyireversetarget-decoystrategy,andthemaximummissedBiotecCat#:130-097-418andCat#:130-052-301)beforecleavagesallowedwere2.AllRAWMSdataandsearchresultspreplatingthenegativefractionsofthetissuedigest.AfterhavebeenuploadedtoMASSIVEandareavailableundertheovernightculture,plateswerewashedthreetimeswith10mLaccessioncode:MSV000085454.Proteinswerefilteredusingof1×PBSfor5mineach.About1mLof50%(v/v)2,2,2-thePerseussoftwareversion1.6.1.3toexcludecontaminants,trifluoroethanol(TFE)(SigmaCat#:T63002)in100mMdecoys,andproteinsidentifiedonlybythesite.Label-freeammoniumbicarbonate(ABC)(SigmaCat#:A6141)wasquantification(LFQ)valuesgeneratedbyMaxQuantwerelog2addedtotheplatesandcellswerescrapedoff.Tolysecellstransformed,andidentificationswerefilteredforaminimumofeffectively,samplesweresonicatedforsix15scyclesata20%threevalidvaluesforatleastoneoftheexperimentalgroups.maximumsetting.Lysateswereincubatedat60°Cfor2htoMissingvalueswereimputedfromanormaldistributionusingdenature,extract,andsolubilizeproteins,andcentrifugedatawidthof0.3anddownshiftof1.8standarddeviations.All13000gfor5minat4°Ctoremoveaggregatesandcelldebris.heatmapsweregeneratedusingnormalizedlog2(LFQ)valuesSamplesweredriedusingaspeedvacuumovernightandacrossallsamplesforeachprotein.Differentialprotein2869https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
3JournalofProteomeResearchpubs.acs.org/jprArticleexpressionwasdeterminedusingthemultisampleanalysisofvariance(ANOVA)test,withapermutation-basedFDR<0.05andafoldchangeparameter(S0)of1.0.Binarycomparisonswerealsomadeusingthesignificanceofmicroarrayanalysis,35withanFDRthresholdof<0.05andS0of1.0.Thegeneontology(GO)termpathwayanalysiswasperformedusingtheDatabaseforAnnotation,Visualization,andIntegratedDiscovery(DAVID)tool(version6.8).StatisticalAnalysisAllexperimentswereperformedinatleastbiologicaltriplicate.Forallnon-MSbinarycomparisons,statisticalanalysiswasconductedusinganunpaired,two-tailedt-testwithap-valueof<0.05beingconsideredassignificant.Allnon-MScomparisonswithmorethanthreeconditionswereconductedusingaone-wayANOVAandTukey’smultiplecomparisontestwithap-valuecutoffof<0.05beingconsideredsignificant.Alldatawereexpressedasmean±standarddeviation.ForMSdata,differentiallyexpressedproteinsbetweenatleasttwoofthefoursampleswereidentifiedusingamultisampleANOVA,withapermutation-basedFDRcutoffof<0.05andafoldchangeparameter(S0)of1.0.ForMSbinarycomparisons(volcanoplots),weusedthesignificanceanalysisofmicro-arraysdevelopedbyTusheretal.(2001)withthesignificancedeterminedusingapermutation-basedFDRcutoffof<0.0536andanS0=1.0.FortheGOtermanalysis,thesignificanceFigure1.Immunofluorescenceimagingrevealedthatthemajorityof(EASEscore<0.05)wasdeterminedusingaFischerExacttest.ourcellswerevimentin+after1,3,and5daysinculture.Specifically,TheEASEscoreisaFisherExacttest-modifiedp-value.Dataourdatashowedthatapproximately96%oftheisolatedcellswerevimentin+onday1,98%werevimentin+positiveafter3days,andwereanalyzedusingGraphPadPrism(version6.01).Volcano100%werevimentin+after5daysinculture.Threeindependentplots,heatmaps,andPCAplotswereproducedinPerseus(version1.6.2.1).biologicalreplicateswereusedfortheexperiment(n=3).Foreachbiologicalreplicate,wetookfiveimageswithapproximately10−30■cellsperfield.Imagingwasperformedusinga40×objectiveonaRESULTSLeicaTCSSP8confocalmicroscope.Thescalebarrepresents50μm.OptimizationofCFIsolationandCultureThegraphdepictsmean±standarddeviation.SinceCFsaremoreadhesivethanothercardiaccelltypes,theypreferentiallyadheretotheplateduringthepreplatingstep.SMA,asensitivemarkerofthefibroblasttomyofibroblastThepurityofourpreplatedCFcultureswasassessedbytransitioninculture,increasedfromapproximately6%ondaydeterminingtheproportionofisolatedcellsthatexpressed1,to53%onday3,and71%onday5followingpreplatingandvimentin,atypeIIIintermediatefilamentproteinthatiswidelyCFculture(Figure2A).Immunoblottingalsorevealedthatα-usedasafibroblastmarker.ImmunofluorescenceimagingSMAexpressionlevelsweremuchhigherin3and5day-performedonCFsculturedfor1,3,and5daypostisolationculturedCFs,comparedto1day(overnight)-culturedCFsshowedthatthemajorityofcellsfromourpreplatedcultures(Figure2B;SupplementalFigure1).Thesefindingsindicatewerevimentin+(Figure1).Moreprecisely,96%ofcellswerethatalowbaselinelevelofα-SMAexpressionexistsinCFsvimentin+onday1,98%werepositiveonday3,and100%fromhealthyheartsafter1dayofculture,butthatextendedwerepositiveonday5,indicativeofanisolationprotocolthattimeincultureincreasesitsexpressionlevelsdramatically.producedhighlypurifiedpreparationofCFsfromintactAccordingly,the1daytimepointwasselectedastheCFcardiactissue.isolationintervalwiththeleasteffectonmyofibroblastCharacterizationofCFChangesOverTimeinCulturedifferentiationasdefinedbyα-SMAinduction.PreviousstudieshaveshownthatCFsaremechanosensitiveCardiacFunction7daysFollowingShamorLAD-Ligationandwilldifferentiateintoamoreactivated(myofibroblast)(MI)SurgerystatewhentheyareculturedonartificiallystifftissuecultureBeforeproceedingtomassspectrometryexperiments,37,38substrates.Forexample,normalplastictissueculturePetriechocardiographywasusedtoverifyifLAD-ligationsurgeriesdishesareseveralordersofmagnitudestifferthanthehealthyinducedcardiacinjurythatwasconsistentwithanacuteMI.39,40humanheart.Thus,weperformedaseriesofpreplatingEchocardiographyofsham-operatedandLAD-ligatedmicewasandculturetime-coursestudiestocharacterizeisolationperformed7daysaftertheinitialsurgery.One-dimensionalM-conditionsthatprovidedsufficientmaterialformassmodeanalysisrevealedthattheleftventricleanteriorwallwasspectrometryanalysisbutretainedaCFphenotypethatmostsignificantlythinnerintheMIhearts,relativetoshamcontrols,closelyresembledtheirinvivostate.whereastheposteriorwallthicknessremainedunaffectedAccordingly,CFswereculturedfor1,3,and5days(SupplementalFigure2A).Furthermore,theLVEDDandfollowingisolation.Cellswereeitherfixedforimmunofluor-LVESDweresignificantlyelevatedattheapical,middle,andescenceorlysedforimmunoblotting.ImmunofluorescencebasalsegmentsoftheheartinmicethatunderwentLADexperimentsshowedthattheproportionofcellsexpressingα-ligation(SupplementalFigure2B).Bothwallthinningand2870https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
4JournalofProteomeResearchpubs.acs.org/jprArticleFigure2.Proportionofα-SMA+CFsandtheproteinexpressionofα-SMAinCFsincreasessignificantlyovertimeinculture.Specifically,wefoundthattheproportionofα-SMA+cellsincreasedovertimeinculture(A).Threeindependentbiologicalreplicateswereusedfortheexperiment(n=3).Foreachbiologicalreplicate,wetookfourimageswithapproximately50−100cellsperfield.Imagingwasperformedona20×objectiveonanOlympusconfocalmicroscopeFV3000.Thescalebarrepresents50μm.Immunoblottingdemonstratedthattheexpressionofα-SMAincreasessignificantlyfromday1todays3and5inculture(p<0.05)(B).Vimentinwasusedasaloadingcontrol.Notably,weobservedadoublebandfor41vimentin,whichcanbeattributedtopost-translationalmodifications.Theexperimentwasrepeatedforatotaloffivetimes(n=5).BandswerequantifiedusingFIJI.Inbrief,meangrayvaluesforα-SMAwerenormalizedtovimentinforeachsample.Aone-wayANOVAusingTukey’smultiplecomparisontestwasperformedforstatisticalanalysis,withsignificance(*)atp<0.05.Graphsdepictmean±standarddeviation.chamberdilationarecharacteristicfeaturesofpost-MIcardiacMassSpectrometryAnalysisofCFsIsolatedfrom7Dayremodeling.ShamorMIHeartsExperimentalOverviewandGlobalNext,LVEDDandLVESDmeasurementswereusedtoAnalysiscalculateLVFSattheapical,middle,andbasalsegmentsoftheAworkflowchartoutliningtheprotocolforthemassheart.Atallthreelevelsoftheheart,theLVFSwassignificantlyspectrometry-basedanalysisofculturedCFsisshowninFigure4.Briefly,LAD-ligationorshamcontrolsurgerywasimpairedininjuredhearts,relativetoshamcontrols(FigureconductedonadultC57Bl/6mice,andheartswereisolatedfor3A).Moreover,two-dimensional,B-modeanalysisrevealed7daysfollowingtheprocedure.AtriaandatrioventricularthatFACwasalsosignificantlyreducedininjuredhearts,valveswereremovedfromthehearts,andtheremainderofthecomparedtoshamcontrols(Figure3B).ThesedatasuggestcardiactissuewasdividedintotheremoteandinfarctzonesthatLADligationsignificantlyimpairedleftventricularusingtissuepalingtodefinetheboundarybetweeninfarctedcontractilityatalllevels,whichistypicalofaninfarctedheart.andnoninfarctedtissue.NotethatwhileshamheartsdidnotCardiacfunctioninshamandinfarctedheartswasalsohavevisuallydistinctremoteandinfarctzones,roughlydeterminedbymeasuringSV,HR,andCO.Thedatashowedequivalentregionsweretakenascontrolsforregion-specificdifferencesintheCFphenotype.Next,thedissectedsamplesthatLAD-ligationresultedinsignificantlyreducedSVat7daysweredigestedseparatelyforCFisolation,asdescribedabove.postsurgerycomparedtoshamcontrols;however,noTissuedigestswereincubatedwithantibody-conjugatedsignificantchangesinHRandCOweredetected(Figure++microbeadstoremoveCD31endothelialcellsandCD453C−E).Interestingly,however,thereisatrendtowardleukocytesinamagneticcellsorter.TheremainingtissueincreasedHRintheinjuredmice,whichmayhelptodigestwasplatedonastandardtissueculture-treatedPetridishcompensatefortheSVreductiontomaintainadequateCO.for2handnonadherentcellsanddebriswerewashedoffwithThisisconsistentwiththepreviousliterature,whichprovidesfibroblastmedia.CFswereculturedovernightandpreparedforsimilarevidenceforsuchcompensatorymechanisms,includingMSthefollowingday,asdescribedintheMethodssection.PriortoMSpreparation,abicinchoninicacidassaywasusedtoincreasedsympatheticinnervationoftheheartfollowingMI,toquantifyandnormalizeeachsampletoapproximately6μgofmaintainadequatebloodflowtothebody.Together,theprotein.EachsamplewasrunasatechnicalduplicateonanechocardiographydatademonstratedthatLAD-ligationnLCcoupledinlinetoaQExactivemassspectrometer.inducedsignificantcardiacdysfunctionintheinfarctedAcrossallexperiments,2148uniqueproteinswereidentifiedcomparedtothesham-operatedcohort.acrossallMSruns(SupplementalTables1and2;2871https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
5JournalofProteomeResearchpubs.acs.org/jprArticleFigure3.EchocardiographyrevealedthatMImiceexhibitedsignificantcardiacdysfunction7daysaftertheinitialsurgerywhencomparedtosham-operatedcontrolmice.Specifically,one-dimensionalM-modeechocardiographywasperformedattheapical,middle,andbasalsegments.TheM-modetracingwasusedtoassessanteriorandposteriorwallthicknesses,aswellastheLVEDDandLVESD(SupplementalFigure2).ThelatterwasusedtocalculateLVFSattheapical,middle,andbasalsegments.Ourdatashowedthatthefractionalshorteningwassignificantlyimpairedatallthreesegmentsoftheinfarctedheartswhencomparedtosham-operatedcontrolmiceat7days(A).Furthermore,ECG-basedkilohertzvisualization(EKV)wasusedtocreateacineloopoftheLVfor1cardiaccycle.Framescorrespondingtoend-diastoleandpeaksystolewereidentifiedandtracedtomeasuretheend-diastolicareaandpeaksystolicarea,whichwerethenusedtocalculateFAC.OurdatarevealedthattheinfarctedheartshadasignificantlylowerFACwhencomparedtoshammice(B).Additionally,measurementsofthepulse-waveDopplerflowvelocityattheaorticorificeandthediameteroftheaorticannuluswereusedtocalculateSVandCO.Wealsomeasuredeachmouse’sHR.OurdatademonstratedsignificantlylowerSVinMImicecomparedtoshamcontrols;however,nodifferenceswereobservedinHRandCObetweenthetwogroups(C−E).Significance(*)atp<0.05usingunpaired,two-tailed,student’st-testcomparingshamandMImice.Thegraphdepictsmean±standarddeviation.SupplementalFigures3and4).Specifically,therewere1957,Figure4).MultisampleANOVAwasusedtoidentify10251854,2131,and2133uniqueproteinsinshamremote,shamproteinsthatweredifferentiallyexpressedbetweenatleasttwoinfarct,MIremote,andMIinfarctregions,respectively(Figureofthesamples(permutation-basedFDRcutoffof<0.05andan5A).Furthermore,1802ofthe2148proteinswereidentifiedinS0of1.0)(SupplementalTable3).Hierarchicalclusteringofallfoursamples.Principalcomponentanalysis(PCA)ofthethe1025differentiallyexpressedproteinsrevealedthatCF1170proteinswithvalid,nonzeroLFQvaluesforall12samplesfromsham-operatedheartsweremoresimilartoeachsamples,showedpreferentialclusteringsham-operatedversusotherthantotheCFsamplesfromtheinfarcted(MI)miceinjured(MI)CFsamplesalongwithcomponent1,with(Figure6).CFsamplesfrominjured(MI)heartspreferentiallyminimalregion-specificdifferencesinclusteringforsamplesclusteredintoinfarctandremoteregion-derivedgroups.Byisolatedfromsham-operatedanimals(Figure5B).Althoughcontrast,CFsamplesfromsham-operatedmiceshowednothedistinctionbetweenCFsamplesfromtheremoteandregion-specificdifferencesintheirexpressionprofiles(seealsoSupplementalFigure5),andassuch,thesesampleswereusedinfarctregionsofinfarctedheartswashardertovisualize,assixindependentshamcontrolsinsubsequentbinaryandrightwardmigrationalongprincipalcomponent1appearstogeneontologyanalyses.reflectagradientoffibroblastactivationfromthelowest(nonactiveCFsinshamhearts),totheintermediate(activatedMassSpectrometryAnalysisofCFsIsolatedfrom7DayCFsintheremoteregionofinjuredhearts),tothehighestShamorMIheartsBinaryComparisonsandGene(highlyactivatedmyofibroblastsintheinfarctedregionofOntologyAnalysisinjuredhearts).SimilarobservationswereinferredfromtheFinally,volcanoplotsweregeneratedforbinarycomparisonsheatmapproducedbyplottingPearson’scorrelationvaluesforbetweendifferentsamples,withsignificancelinesrepresentingeachbinarycomparisonbetweensamplesasanintensityapermutation-basedFDRcutoffof<0.05andanS0=1.042markerinthePerseussoftwarepackage(Supplemental(Figure7).Reddotsrepresentproteinsthatweremorehighly2872https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
6JournalofProteomeResearchpubs.acs.org/jprArticleFigure4.Overviewofthemassspectrometryworkflow.Briefly,heartswereexcisedfrom7dayshamandMI-operatedmice,andtheatriaandatrioventricularvalveswereremoved.TheremainderofthetissuewasdividedintotheinfarctandremotezoneforbothshamandMIsamples.Notethatwhileshamheartsdidnothaveavisuallydistinctremoteandinfarctzone,wetookroughlyequivalentregionsascontrolstoaccountforanypotentialregion-specificdifferences.Eachtissuewasdigested,aspreviouslydescribed.CD31+andCD45+cellswereremovedusingamagneticcellsorter,andtheresultingdigestwasplatedfor2htoallowCFstopreferentiallyattach.Plateswerewashedafter2handtheadherentcellswereculturedovernight.Sampleswerelysedthefollowingdayandproteinswerequantifiedusingabicinchoninicacidassay.6μgofproteinfromeachsamplewaspreparedforMSandrunonananoliquidchromatography(nanoLC)coupledtoaQExactivePlus.RawfilesweresearchedinMaxQuantagainstamouseproteomicsequencedatabaseandadownstreamanalysiswasconductedusingthePerseussoftwareversion1.6.1.3.expressed,whilethegreendotsrepresentproteinswithtothesiteofischemia;rather,CFsinremoteregionsalsoreducedexpressioninthereferencecondition.Insummary,underwentproteinexpressionchangesthatappeartobeweidentified1052proteinsdifferentiallyexpressedbetweenrelevanttoongoingcardiacremodelingandHFprogression.MIinfarctandsham(SupplementalTable4),579betweenMIThisdataprovidesfurtherevidenceofaCFactivationgradientremoteandsham(SupplementalTable5),and15betweenMIbetweencellsinnoninfarctedtissuesandthoselocatedintheinfarctandMIremoteCFs(SupplementalTable6;Figure7).differentmyocardialzonespost-MI.ThesenumberssuggestedthatwhilethemajorityoftheMI-Asexpected,severalofthedifferentiallyexpressedproteinsdependentchangesinCFproteinexpressionoccurredattheinMIcomparedtoshamCFshavebeenpreviouslyimplicatedsiteofinfarct,asubstantialnumberofproteinswereinpost-MIremodelingandfibrosis.Specifically,severalECMdifferentiallyexpressedinCFsfromremoteareasofthecomponentswereupregulatedinMICFs,includingstructuralheartaswell.Moreprecisely,theMIinjurywasnotexclusiveproteinslikecollagenfamilymembers(Col1a1,Col3a1,2873https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
7JournalofProteomeResearchpubs.acs.org/jprArticleFigure5.ExploratoryanalysisoftheMSexperimentusing1day-culturedCFsfrom7dayshamandMImice.AcrossallMSruns,2148proteinswereidentified.Specifically,weidentified1957,1854,2131,and2133proteinsintheshamremote(rem),shaminfarct(inf),MIremote,andMIinfarctCFs,respectively(A).WeconductedPCAusingthe1170proteinsthathadvalid,nonzerovaluesforall12samples(B).TherewerecleardistinctionsbetweentheshamandMIsamplesacrosscomponent1.Noregion-specificclusteringwasobservedbetweentheshamandinfarctsamples,suggestingthatCFsfromtheseregionsweresimilar.Figure6.GlobalanalysisoftheMSexperimentusing1day-culturedCFsfrom7dayshamandMImice.StatisticalanalysisusingmultisampleANOVA(permutation-basedFDR<0.05andanS0=1.0)revealed1025differentiallyexpressedproteinsbetweenatleasttwoofthefourexperimentalgroups.Hierarchicalclusteringofthe1025proteinsrevealeddifferentexpressionprofilesbetweenshamandMICFs.Therewerethreebiologicalreplicatespercondition.AllheatmapsweregeneratedusingnormalizedLFQvaluesona1to1000intensityscaleforeachprotein.Azoomed-inviewoftheregionoftheheatmaphighlightsproteinsappearingtodifferbetweenCFsamplesfromtheinfarctandremoteregionsofinfarctedmice.2874https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
8JournalofProteomeResearchpubs.acs.org/jprArticleFigure7.Volcanoplotoftherelevantbinarycomparisons.Thecurvedsolidblacklinesareknownasthe“lineofsignificance”,whicharedeterminedbasedonapermutation-basedFDRcutoffof<0.05andanS0=1.0.Thereddotsrepresentproteinsenrichedinthefirstcondition,whilethegreendotsrepresentproteinsrelativelyenrichedinthesecondcondition.WhencomparingMIinfarcttosham,weidentified867proteinsenrichedintheMIinfarctand185proteinsenrichedinshamCFs.WhencomparingMIremotetosham,weidentified505proteinsenrichedinMIremoteand74proteinsenrichedinshamCFs.Finally,whencomparingMIinfarctversusMIremote,weidentified15differentiallyexpressedproteins,where11wereenrichedintheMIinfarctand4wereenrichedinMIremoteCFs.AfewofthedifferentiallyexpressedproteinsandenrichedGOtermsaredepictedforeachcondition.NoGOtermsareshownforMIinfarctversusMIremotecomparisonsbecausetherewereonly15differentiallyexpressedproteins,whicharenotenoughforGOtermenrichmentanalysis.Col4a2,Col5a1,Col1a2,andCol5a2)andfibronectin,aswellasexperiencingadversecardiaceventsandtheobservationthatnonstructuralcomponentslikeSparc(alsoknownasmanyofthesesamegenes(GstandMtfamilies)arealso43−4550−53osteonectin).Moreover,follistatin-relatedprotein1,decreasedinpathologicversusphysiologichypertrophy.whichlabelspathologicalCFspost-MI,wasshowntobeTakentogether,thesefindingsindicatedthatMIinjurydid,asupregulatedinbothMIinfarctandremoteCFswhenexpected,induceCFactivationtowardamoremyofibroblast-46comparedtoshamcontrols.Thedataalsoshowedthatlikephenotype,especiallywithintheinfarctregion.Itwasoffocaladhesionproteins,includingpaxillin(Pxn),numerousparticularinterest,however,thatmanyofthesamechangesintegrins(Itgb3,Itgb1,Itgav,Itga1,andItgb6),andfocalcouldbeobserved,albeittoagenerallylesserextentinCFsadhesionkinase1(Ptk2)wereallincreasedinMIconditionsfromtheremote(noninfarcted)areasoftheheart.Directcomparedtosham.Indeed,focaladhesionprocessesconnectbinarycomparisonidentified15proteinsthatwerediffer-cellstotheECMandhavebeenshowntofacilitatecellularentiallyexpressedbetweentheremoteandinfarctregions.Of47−49migrationtowardthesourceofinjury.Incontrast,these,11proteinsweremorehighlyexpressedinCFsfromthegelsolin,whichisfoundtobeamarkerofadulthomeostaticinfarctregion(Gpc1,Cthrc1,Vmac,Nexn,Znf185,Sprr1a,CFs,wasdecreasedinMIsamples,comparedtoitslevelinSpecc1,Emb,Limd2,Pawr,andMcam),while4proteins46shamcontrols.Moreover,proteinsinvolvedinglutathioneshowedlowerexpressioninCFsfromtheinfarctzone(Gstt1,metabolismandxenobioticclearance,includingGstt1andGstm1,Tceal3,andInmt).TofurtherinvestigatepotentialGstm1,weredownregulatedinCFspost-MI.ThesedataaredifferencesbetweentheinfarctandremoteregionsfollowingconsistentwithstudiesshowingthatpatientswithGstt1andMI,weidentified285proteinsthatweredifferentiallyGstm1-nullmutationsorpolymorphismsareatahigherriskofexpressedbetweenthesesampleswhenalowerstringency2875https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
9JournalofProteomeResearchpubs.acs.org/jprArticleFigure8.Proteinexpressionofα-SMAandCthrc1inCFsisolatedfromdifferentregionsofsham-operatedandLAD-ligatedmurinehearts.Notably,althoughα-SMAistheexpressioninallsamples,itwasfoundtobehigherinCFsfromtheMIinfarctregion(A).Moreover,therewasahigherCthrc1expressionintheMIinfarctCFscomparedtoshamcontrolandMIremoteCFs(B).Vimentinwasusedasaloadingcontrol.Eachsamplewasobtainedbypoolingtherespectiveregionsfromfivemurinehearts.cutoff(p<0.05)wasused(SupplementalFigure6andTablelevelswerepresentatdetectablelevelsinsham-operatedhearts7).andincreasedonlyslightlyintheinfarctedanimals(FigureGeneontologyenrichmentsweregeneratedusingthe8A).Whilethisresultwassurprisingatfirst,itwasconsistentDAVIDfunctionalannotationtooltoidentifyGOterms(pwithourproteomicresultsandmayindicatethatα-SMAisa<0.05)associatedwiththedifferentiallyexpressedproteinsformuchmoresensitiveindexofplating/cultureonastiffeachbinarycomparison.Ofthe1052differentiallyexpressedsubstratethanitisofmyofibroblastactivationfollowingproteinsbetweenMIinfarctandsham,867wereupregulatedmyocardialinfarction.Asdiscussedabove,Cthrc1wasoneofand185weredownregulatedinMIInfarctCFs,relativetothemostdifferentiallyexpressedproteinsintheinfarctzoneshamcontrols(SupplementalTable4).TheproteinsenrichedcomparedtoinfarctedremoteandidentifiedasbeinginMIinfarctwerefoundtobeassociatedwithGOtermssignificantlydifferentinthefollowingbinarycomparisons:pertainingto“cell−cellandcell−matrixadhesion”,“ribosomesMI-remoteversussham,MI-infarctversussham,andMI-andtranslation”,“chaperone-mediatedproteinfolding”,andinfarctversusMI-remote(Figure7).Consistentwiththese“collagenfibrilorganization”(SupplementalTable8).Inobservations,postproteomicimmunoblottingforCthrc1contrast,proteinsthatweredownregulatedinMIinfarctshowedthatitwasexpressedatlowbasallevelsinshamrelativetoshamCFswereassociatedwithtermsrelevanttosamples,increasedmodestlyinremoteregions,andincreased“glycolyticprocesses”,“lipidmetabolism”,and“insulin-likedramaticallyintheinfarctzone(Figure8B).growthfactor-binding”(SupplementalTable9).Ofthe579proteinsdifferentiallyexpressedbetweenMIremoteandsham■DISCUSSIONCFs,505wereenrichedand74weredownregulatedinMIToourknowledge,thisisthefirststudytousemassremoteCFs,relativetoshamcontrols(SupplementalTable5).spectrometrytocharacterizechangesinproteinexpressionTheproteinsenrichedinMIremotewereassociatedwithGOforregion-specificCFsisolatedacutelyfollowingshamorMI-termsrelatedto“cell−cellandcell−matrixadhesion”,surgery.ArecentpaperfromtheLundbygroupexaminedthe“ribosomesandtranslation”,“proteinfolding”,and“collagendeepproteomeofdifferentcardiaccelltypesthatwerefreshlyfibrilorganization”(SupplementalTable10).Incontrast,the54isolatedfromhealthyrathearts.CFsintheirstudywereproteinsdownregulatedinMIremoteCFswereassociatedisolatedusingasimilardigestionandpreplatingmethodwithtermspertainingto“oxidation−reductionprocesses”,consistentwiththeapproachhere,albeitonlyinhealthycells;“lipidmetabolism”,and“insulin-likegrowthfactor-binding”however,theydedicatedasignificantlygreatermassspectrom-(SupplementalTable11).Whileonly15proteinsdifferedetrytimetotheirstudyresultinginamuchdeeperproteomicbetweenremoteandinfarctregionsofMI-injuredheartswhendataset.However,whenourmouseCFproteomedatawerethepermutation-basedFDRcutoffof<0.05andanS0=1.0comparedinintensity/rankplotstoLundby’sratdatawereused,ifwecomparetheseregionsusingthe285(SupplementalFigure8),thedatashowaveryconsistentdifferentiallyexpressedproteinsbasedonthep<0.05cutoff,dispersion.DespitetheproportionatelysmalleramountofCFweseeanumberofthesameGOterm-relatedfibrosis-linkedproteinavailablepermouseheart,ourprotocolsprovidedgoodpathwaysthatwereidentifiedaboveincludingcell−cellandcoverageacrosstherangeofproteinabundancesseeninthecell−matrixadhesion,andglutathionemetabolism(Supple-Lundbydataset.Asexpected,someofthecoverageatverylowmentalTable12).Thesedataareconsistentwiththenotionabundanceswasmissingfromourmousedata.thatfibroblastsarebeingactivatedonaglobalscale,butthatItisgenerallyacceptedthatCFswithintheinfarctedthosewithintheinfarctzonearethemostaffectedbythemyocardiumexperiencethegreatestextentofmechanical,injury.Notably,afewadditionalGOtermssuchasthebiochemical,andpathophysiologicstressorsasaresultoftheextracellularexosomes,cytoplasm,andmyosincomplexareinjury.Consistentwiththisnotion,wefoundthatMIinducedhighlightedaspathwaysthatappeartodifferbetweenCFsinthemostsignificantproteinexpressionchangesinCFslocatedtheremoteandinfarctzonesofMI-injuredmice.atthesiteofischemia,however,weweresurprisedtofindthatPostproteomicAnalysisConfirmsInfarct-SpecificCFsfromlocationsdistaltotheinfarctunderwentasimilarsetInductionofCthrc1ofchangesasthoseintheinfarct.AnalysisofvolcanoplotdataFinally,weperformedthewesternblottinganalysisonlysatesforbinarycomparisonsbetweensham,remote-andinfarct-fromthevarioussamplesusedfortheproteomiccomparisonresidentCFsidentifiedanumberofregion-specificdifferences.above(Figure8;SupplementalFigure7).Importantly,α-SMACthcr1,Nexn,andSprr1awereinducedinCFsthroughoutthe2876https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
10JournalofProteomeResearchpubs.acs.org/jprArticleheartbuttoamuchgreaterextentintheinfarctregion.NotTheheartisknowntoundergoprofoundmetabolicchanges68surprisingly,allthreeoftheseproteinshavebeenpreviouslyfollowingmyocardialinfarction.Toourknowledge,however,55−60implicatedinthefibroblastfunctionandfibrosis.therehasbeennocomprehensiveproteomicmeasureofthePostproteomicimmunoblottinganalysisconfirmedthatCFmetabolicstatefollowingischemicinjury.TheGOtermCthrc1expressionwasincreasedspecificallyintheinfarctanalysisofproteinchangesinCFsfrominfarctedheartsregioncomparedtoremoteandshamCFsamples.ThisfindingshowedclearevidenceofmetabolicreorganizationfollowingwascorroboratedbytherecentdemonstrationthatCthrc1MI.Indeed,areductionofproteinsassociatedwithβ-oxidationmarksapreviouslyunappreciatedpopulationofprofibroticandlipidmetabolismwasobservedaswellasareductioninCFsthatlocalizespecificallytothescar/infarctregionandmitochondrialproteinsthatwereassociatedwithcarbohydratehighlightsthepotentialbiologicalimportanceoftheothermetabolism,specificallythoserequiredforpyruvatetoacetyl-proteinsweidentifiedasselectivelyinducedintheinfarctCoAconversion.Thelatterobservationisconsistentwiththeregion(Gpc1,Vmac,Znf185,Specc1,Emb,Limd2,Pawr,andnotionthathypoxicandischemicinjuriescaninduceMcam)duringthescar-formingprocess.61InadditiontoGstt1significantmitochondrialdamageanddysfunctionincells.andGstm1(discussedabove),Tceal3,atranscriptionIndeed,apreviousstudyfromourgroupfoundthattheelongationfactorA-likeprotein,andInmt,anindolethylaminesecretomeofCFsinhypoxicconditionswasenrichedin69N-methyltransferasethatisalsoknowntoparticipateinmitochondria-associatedproteins.Together,thesefindingsxenobioticclearancewerefoundtobedecreasedinCFssuggestthathypoxiaandLADligationpromotemitochondrialfromtheinfarctzonesuggestingthatthereductionofthesedysfunctionandreducedβ-oxidationinCFs.Furtherresearchfactorsmaycontributetoscarformationintheinfarctedheart.isnecessarytofullycharacterizethemetabolismofCFsinInadditiontounderstandingthese15proteins,interrogationhealthyanddiseasedstates.WhiletheCFswithintheinfarctzoneshowaprofoundofthefunctionandbiologicpathwayaffiliationofall285injury-inducedchangeintheirproteome,themostsurprisingproteinsidentifiedasdifferent(p<0.05)willlikelyprovideresultfromourstudywastheextentofchangethatalsoimportantcluestounderstandingthesignalingconditionsthatoccurredinCFsthatresidedinmoreremote(noninfarcted)drivereactive-typeandreplacement-typefibrosisintheremoteregionsoftheventricles.Thesefindingsareconsistentwithandinfarctregions,respectively.othersimilarobservations,includingthosebyNagarajuetal.AsindicatedbyGOtermanalyses,MIinducedasimilarset(2017),thatreportedaglobalactivationoffibroblastsinofCF-specificproteomicchangesinboththeremoteandinfarctedpighearts,withthemajorityofmeasurableinterstitialinfarctregionsthatreflectedcellsurfaceandsignalingchangesandperivascularreplacementtypeoffibrosislocalizedtotheincludingincreasedcell−cellandcell−matrixadhesion20scar(infarct)zone.TheseauthorsreasonthatglobalCFmolecules,andcollagenfibrilorganization.Forinstance,itactivationmaybecausedbyanincreasedmechanicalloadonhasbeenshownthatcoordinatedECMremodelingisachievedtheheart,includingattheremotezone,anotionthatisthroughthecrosstalkbetweenmyofibroblastsatcell−cellconsistentwiththeBogaertetal.(2000)study,thatshowedjunctions,inadditiontothecell−matrixcommunication.Moresignificantcardiacdysfunctionandleftventriclestrainintheprecisely,myofibroblastsformadhesionstructureswiththe31remoteandborderregionsofaninfarct.ThereareseveralECM,whichhelpsdistributetheircontractileforcethroughoutpotentialexplanationsforthesefindings.Forinstance,MIthematrix.Likewise,chaperone-mediatedproteinfoldinghasinjurycaninducearobustimmuneresponse,whichincludesbeenshowntobeimportantintheprocessingandassemblyofinfiltrationofcirculatingneutrophilsandmonocytes,aswellascollagenandotherECMproteins.Forinstance,astudyanincreasedexpressionofinflammatorymediatorsinbothshowedthattheFK506-bindingprotein,whichisimportantfor70−72remoteandinfarctregions.Onestudyfoundthatcollagenassembly,waselevatedinbleomycin-inducedlunginflammatorymarkers,includinginterleukin-1βandinterfer-62fibrosisandinpatientswithidiopathicpulmonaryfibrosis.on-γ,wereelevatedintheremoteandinfarctregionofpigTogether,thesedatademonstratethatMIinjurysignificantlyheartsfollowingMI.20GiventherecentappreciationfortheinducedsimilarprofibroticchangesinCFslocatedatthesiteofinteractionbetweenfibroblastsanddifferentimmunecellischemiaandthosefoundmoreremotelyintheheart.types,itisreasonabletopostulatethatatleastsomeoftheWealsoidentifiedGOtermsthatareassociatedwithchangesintheremoteCFproteomemaybelinkedtothesignalingpathwayswhoseroleislesswellappreciatedintheproinflammatoryenvironmentcreatedbytheinfarction.contextofcardiacinjuryandrepair.Forexample,proteinsLikewise,impairedcardiacfunctionfollowingMIisexpectedassociatedwiththeSNAREcomplexesandvesicle-mediatedtohavesystem-wideeffectstoincreasetheactivitiesofthetransportwerealsoshowntobeenrichedinMI,relativetosympatheticnervoussystemandtherenin−angiotensin−shamandremoteCFs.Althoughmanyofthespecificproteinsaldosteronesystem(RAAS).Itistobeexpectedthatsuchandsignalingmechanismsremaintobecharacterizedinpost-neurohormonalresponsestodecreasedLVfunctionfromanMICFs,numerousstudieshavedemonstratedtheimportanceinfarctedheartaffectremoteregionsofthemyocardiumandofexosomesecretionandvesicle-mediatedcellularcommuni-similarlyalterthephysiologyofCFswithinremoteareasofthe63,64cationinvariousdiseases.Forinstance,TGF-β-containingmyocardiumaswell.exosomescantriggerbothdifferentiationandprofibroticWhencombinedwithothernext-generationsequencingresponsesinfibroblasts.Moreover,miRNAsfromfibroblasttechniquessuchastranscriptomicsandnewimagingtoolssuchexosomepreparationshavebeenshowntostimulatehyper-asRNAscopeourdatawillbeusefulfordefiningthenature65trophyincardiomyocytes.InadditiontotheirroleinandregionalityofCFactivationfollowingmyocardialexocytosis,SNAREproteinchangesmightalsobeimportant73infarction.Indeed,therecentRNA-seqstudybyFarbehietforalteringcell-surfacemarkerexpressionandturnoveroffocalal.(2019)showedthereareanumberofdistinctfibroblastadhesioncomplexesinthecontextofcardiacremodelingandpopulationsinbothuninjuredandinjuredheartsandthat66,67fibrosis.thesepopulationschangetheirtranscriptionprofilesdramat-2877https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
11JournalofProteomeResearchpubs.acs.org/jprArticle74icallypost-MI.ItwouldbeinterestingtoinvestigatewhetherAnthonyO.Gramolini−TranslationalBiologyandanyofthesepopulationsareregion-specificandtoidentifytheEngineeringProgram,TedRogersCentreforHeartResearch,CFpopulationsthatregulateremodelingineithertheremoteToronto,Ontario,CanadaM5G1M1;Departmentoforinfarctzones.Physiology,FacultyofMedicine,UniversityofToronto,Toronto,Ontario,CanadaM5S1A8;orcid.org/0000-■ASSOCIATEDCONTENT0003-1109-2070;Phone:416-946-8257;*sıSupportingInformationEmail:Anthony.gramolini@utoronto.caScottP.Heximer−TranslationalBiologyandEngineeringTheSupportingInformationisavailablefreeofchargeatProgram,TedRogersCentreforHeartResearch,Toronto,https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00098.Ontario,CanadaM5G1M1;DepartmentofPhysiology,AlistofallunfilteredidentificationsfortheMSFacultyofMedicine,UniversityofToronto,Toronto,Ontario,experiments(SupplementalTable1);filteredlistofallCanadaM5S1A8;Phone:416-978-6048;2148proteinswithimputationfortheMSexperimentEmail:scott.heximer@utoronto.ca(SupplementalTable2);listof1025proteinsthatweredifferentiallyexpressedbetweenatleasttwooftheAuthorsexperimentalgroupsbymulticomparisonANOVA(FDRAlisonHacker−TranslationalBiologyandEngineering<0.05,S0=1.0)(SupplementalTable3);listofProgram,TedRogersCentreforHeartResearch,Toronto,proteinsfromthebinarycomparisonofMIinfarctandOntario,CanadaM5G1M1shamCFs(FDR<0.05,S0=1.0)(SupplementalTableDylanLangburt−TranslationalBiologyandEngineering4);listofproteinsfromthebinarycomparisonofMIProgram,TedRogersCentreforHeartResearch,Toronto,remoteandshamCFs(FDR<0.05,S0=1.0)Ontario,CanadaM5G1M1;DepartmentofPhysiology,(SupplementalTable5);listofproteinsfromthebinaryFacultyofMedicine,UniversityofToronto,Toronto,Ontario,comparisonofMIinfarctandMIremoteCFs(FDRCanadaM5S1A8<0.05,S0=1.0)(SupplementalTable6);listofproteinsMichaelDewar−TranslationalBiologyandEngineeringfromthebinarycomparisonofMIinfarctandMIProgram,TedRogersCentreforHeartResearch,Toronto,remoteCFswithalessstringentcutoff(FDR<0.05)Ontario,CanadaM5G1M1;DepartmentofPhysiology,(SupplementalTable7)(XLSX)FacultyofMedicine,UniversityofToronto,Toronto,Ontario,GOtermsassociatedwithproteinsenrichedinMICanadaM5S1A8infarctCFs,relativetoshamcontrol(n=867protein)MeghanJ.McFadden−TranslationalBiologyand(SupplementalTable8);GOtermsassociatedwithEngineeringProgram,TedRogersCentreforHeartResearch,proteinsdownregulatedinMIinfarctCFs,relativetoToronto,Ontario,CanadaM5G1M1shamcontrols(n=185protein)(SupplementalTableHangjunZhang−TranslationalBiologyandEngineering9);GOtermsassociatedwithproteinsenrichedinMIProgram,TedRogersCentreforHeartResearch,Toronto,remoteCFs,relativetoshamcontrols(n=505protein)Ontario,CanadaM5G1M1(SupplementalTable10);GOtermsassociatedwithUrosKuzmanov−TranslationalBiologyandEngineeringproteinsdownregulatedinMIremoteCFs,relativetoProgram,TedRogersCentreforHeartResearch,Toronto,shamcontrols(n=74protein)(SupplementalTableOntario,CanadaM5G1M1;DepartmentofPhysiology,11);GOtermsassociatedwithproteinsdifferentiallyFacultyofMedicine,UniversityofToronto,Toronto,Ontario,expressedbetweenMIinfarctversusMIremoteCFs(nCanadaM5S1A8=285protein)(SupplementalTable12)(PDF)Yu-QingZhou−TranslationalBiologyandEngineeringRawimmunoblotsofα-SMAandvimentin(Supple-Program,TedRogersCentreforHeartResearch,Toronto,mentalFigure1);echocardiographyofsham-operatedOntario,CanadaM5G1M1andLAD-ligatedmice(SupplementalFigure2);histo-BilalHussain−TranslationalBiologyandEngineeringgramoftransformedandimputedLFQvaluesProgram,TedRogersCentreforHeartResearch,Toronto,(SupplementalFigure3);theglobalcorrelationbetweenOntario,CanadaM5G1M1individualsamples(SupplementalFigure4);volcanoFahadEhsan−TranslationalBiologyandEngineeringplotcomparingshaminfarctandshamremoteCFsProgram,TedRogersCentreforHeartResearch,Toronto,(SupplementalFigure5);volcanoplotcomparingMIOntario,CanadaM5G1M1;DepartmentofPhysiology,infarctandMIremoteCFs(SupplementalFigure6);FacultyofMedicine,UniversityofToronto,Toronto,Ontario,rawimmunoblotsofα-SMA,Cthrc1,andvimentinCanadaM5S1A8(SupplementalFigure7);andthewaterfallplotofCFBorisHinz−LaboratoryofTissueRepairandRegeneration,proteinsidentifiedbyPoulsenetal.(SupplementalFacultyofDentistry,UniversityofToronto,Toronto,Ontario,Figure8)(PDF)CanadaM5G1G6■Completecontactinformationisavailableat:AUTHORINFORMATIONhttps://pubs.acs.org/10.1021/acs.jproteome.1c00098CorrespondingAuthorsHaisamShah−TranslationalBiologyandEngineeringNotesProgram,TedRogersCentreforHeartResearch,Toronto,Theauthorsdeclarenocompetingfinancialinterest.Ontario,CanadaM5G1M1;DepartmentofPhysiology,FacultyofMedicine,UniversityofToronto,Toronto,Ontario,CanadaM5S1A8;orcid.org/0000-0001-6740-5465;■ACKNOWLEDGMENTSPhone:+61-416-070-074;Email:haisam.shah@ThisprojectwasfundedbyaTeamGrantfromtheTedmail.utoronto.caRogersCentreforHeartResearchTranslationalBiologyand2878https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
12JournalofProteomeResearchpubs.acs.org/jprArticleEngineeringProgram(TBEP);SeedfundsfromTBEP;and(21)French,B.A.;Kramer,C.M.MechanismsofPostinfarctLeftthisresearchispartoftheUniversityofToronto’sMedicinebyVentricularRemodeling.DrugDiscoveryToday:Dis.Mech.2007,4,Designinitiative,whichreceivesfundingfromtheCanadaFirst185−196.ResearchExcellenceFund.TheresearchofB.H.issupported(22)Saeed,M.;Lee,R.J.;Weber,O.;Do,L.;Martin,A.;Ursell,P.;byaFoundationGrantfromtheCanadianInstitutesofHealthSaloner,D.;Higgins,C.B.ScarredMyocardiumImposesAdditionalBurdenonRemoteViableMyocardiumdespiteaReductionintheResearch(#375597)andsupportfromtheJohnEvansExtentofAreawithLateContrastMREnhancement.Eur.Radiol.LeadershipFunds(#36050,#38861,and#38430)and2006,16,827−836.InnovationFunds(“FibrosisNetwork,#36349”)fromthe(23)Shinde,A.V.;Frangogiannis,N.G.FibroblastsinMyocardialCanadaFoundationforInnovation(CFI)andtheOntarioInfarction:ARoleinInflammationandRepair.J.Mol.Cell.Cardiol.ResearchFund(ORF).2014,70,74−82.(24)Krenning,G.;Zeisberg,E.M.;Kalluri,R.TheOriginof■REFERENCESFibroblastsandMechanismofCardiacFibrosis.J.Cell.Physiol.2010,(1)Cohn,J.N.;Ferrari,R.;Sharpe,N.CardiacRemodeling225,631−637.ConceptsandClinicalImplications:AConsensusPaperfroman(25)Olivetti,G.;Ricci,R.;Beghi,C.;Guideri,G.;Anversa,P.InternationalForumonCardiacRemodeling.J.Am.Coll.Cardiol.ResponseoftheBorderZonetoMyocardialInfarctioninRats.Am.J.2000,35,569−582.Pathol.1986,125,476−483.(2)Konstam,M.A.;Kramer,D.G.;Patel,A.R.;Maron,M.S.;(26)Galan,D.T.;Bito,V.;Claus,P.;Holemans,P.;Abi-Char,J.;Udelson,J.E.LeftVentricularRemodelinginHeartFailure.JACC:Nagaraju,C.K.;Dries,E.;Vermeulen,K.;Ventura-Clapier,R.;Sipido,Cardiovasc.Imaging2011,4,98−108.K.R.;Driesen,R.B.ReducedMitochondrialRespirationinthe(3)Burchfield,J.S.;Xie,M.;Hill,J.A.PathologicalVentricularIschemicasWellasintheRemoteNonischemicRegioninRemodeling:Mechanisms:Part1of2.Circulation2013,128,388−PostmyocardialInfarctionRemodeling.Am.J.Physiol.:HeartCirc.400.Physiol.2016,311,H1075−H1090.(4)Travers,J.G.;Kamal,F.A.;Robbins,J.;Yutzey,K.E.;Blaxall,B.(27)Kramer,C.M.;Lima,J.A.;Reichek,N.;Ferrari,V.A.;Llaneras,C.CardiacFibrosis:TheFibroblastAwakens.Circ.Res.2016,118,M.R.;Palmon,L.C.;Yeh,I.T.;Tallant,B.;Axel,L.Regional1021−1040.DifferencesinFunctionwithinNoninfarctedMyocardiumduringLeft(5)Camelliti,P.;Borg,T.;Kohl,P.StructuralandFunctionalVentricularRemodeling.Circulation1993,88,1279−1288.CharacterisationofCardiacFibroblasts.Cardiovasc.Res.2005,65,(28)Weisman,H.F.;Bush,D.E.;Mannisi,J.A.;Bulkley,B.H.40−51.GlobalCardiacRemodelingafterAcuteMyocardialInfarction:A(6)Souders,C.A.;Bowers,S.L.K.;Baudino,T.A.CardiacStudyintheRatModel.J.Am.Coll.Cardiol.1985,5,1355−1362.Fibroblast:TheRenaissanceCell.Circ.Res.2009,105,1164−1176.(29)Migrino,R.Q.;Zhu,X.;Morker,M.;Brahmbhatt,T.;Bright,(7)Sutton,M.G.St.J.;Sharpe,N.LeftVentricularRemodelingM.;Zhao,M.MyocardialDysfunctioninthePeriinfarctandRemoteAfterMyocardialInfarction.Circulation2000,101,2981−2988.RegionsFollowingAnteriorInfarctioninRatsQuantifiedby2D(8)Ong,S.-B.;Hernández-Reséndiz,S.;Crespo-Avilan,G.E.;RadialStrainEchocardiography:AnObservationalCohortStudy.Mukhametshina,R.T.;Kwek,X.-Y.;Cabrera-Fuentes,H.A.;Cardiovasc.Ultrasound2008,6,No.17.Hausenloy,D.J.InflammationFollowingAcuteMyocardial(30)Kramer,C.M.;Rogers,W.J.;Theobald,T.M.;Power,T.P.;Infarction:MultiplePlayers,DynamicRoles,andNovelTherapeuticPetruolo,S.;Reichek,N.CoronaryHeartDiseae/MyocardialOpportunities.Pharmacol.Ther.2018,186,73−87.Infarction/ThrombolyticAgents:RemoteNoninfarctedRegion(9)Frangogiannis,N.TheImmuneSystemandCardiacRepair.DysfunctionSoonAfterFirstAnteriorMyocardialInfarctionAPharmacol.Res.2008,58,88−111.MagneticResonanceTaggingStudy.Circulation1996,94,660−666.(10)Frangogiannis,N.G.TheExtracellularMatrixinMyocardial(31)Bogaert,J.;Bosmans,H.;Maes,A.;Suetens,P.;Marchal,G.;Injury,Repair,andRemodeling.J.Clin.Invest.2017,127,1600−1612.Rademakers,F.E.RemoteMyocardialDysfunctionafterAcute(11)Ivey,M.J.;Tallquist,M.D.DefiningtheCardiacFibroblast.AnteriorMyocardialInfarction:ImpactofLeftVentricularShapeonCirc.J.2016,80,2269−2276.RegionalFunction.J.Am.Coll.Cardiol.2000,35,1525−1534.(12)Dobaczewski,M.;Gonzalez-Quesada,C.;Frangogiannis,N.G.(32)Lidington,D.;Fares,J.C.;Uhl,F.E.;Dinh,D.D.;Kroetsch,J.TheExtracellularMatrixasaModulatoroftheInflammatoryandT.;Sauvé,M.;Malik,F.A.;Matthes,F.;Vanherle,L.;Adel,A.;ReparativeResponseFollowingMyocardialInfarction.J.Mol.Cell.Momen,A.;Zhang,H.;Aschar-Sobbi,R.;Foltz,W.D.;Wan,H.;Cardiol.2010,48,504−511.Sumiyoshi,M.;Macdonald,R.L.;Husain,M.;Backx,P.H.;Heximer,(13)vanPutten,S.;Shafieyan,Y.;Hinz,B.MechanicalControlofS.P.;Meissner,A.;Bolz,S.-S.CFTRTherapeuticsNormalizeCardiacMyofibroblasts.J.Mol.Cell.Cardiol.2016,93,133−142.CerebralPerfusionDeficitsinMouseModelsofHeartFailureand(14)Hinz,B.;Phan,S.H.;Thannickal,V.J.;Galli,A.;Bochaton-SubarachnoidHemorrhage.JACC:BasicTransl.Sci.2019,4,940−Piallat,M.-L.;Gabbiani,G.TheMyofibroblast.Am.J.Pathol.2007,958.170,1807−1816.(33)Pinto,A.R.;Ilinykh,A.;Ivey,M.J.;Kuwabara,J.T.;D’Antoni,(15)Davis,J.;Molkentin,J.D.Myofibroblasts:TrustYourHeartM.L.;Debuque,R.;Chandran,A.;Wang,L.;Arora,K.;Rosenthal,N.andLetFateDecide.J.Mol.Cell.Cardiol.2014,70,9−18.(16)Hinz,B.FormationandFunctionoftheMyofibroblastduringA.;Tallquist,M.D.RevisitingCardiacCellularComposition.Circ.TissueRepair.J.Invest.Dermatol.2007,127,526−537.Res.2016,118,400−409.(17)Tallquist,M.D.;Molkentin,J.D.RedefiningtheIdentityof(34)Zhou,Y.-Q.;Foster,F.S.;Nieman,B.J.;Davidson,L.;Chen,X.CardiacFibroblasts.Nat.Rev.Cardiol.2017,14,484−491.J.;Henkelman,R.M.ComprehensiveTransthoracicCardiacImaging(18)Talman,V.;Ruskoaho,H.CardiacFibrosisinMyocardialinMiceUsingUltrasoundBiomicroscopywithAnatomicalCon-InfarctionfromRepairandRemodelingtoRegeneration.CellTissuefirmationbyMagneticResonanceImaging.Physiol.Genomics2004,Res.2016,365,563−581.18,232−244.(19)vandenBorne,S.W.M.;Diez,J.;Blankesteijn,W.M.;Verjans,(35)Chérin,E.;Williams,R.;Needles,A.;Liu,G.;White,C.;J.;Hofstra,L.;Narula,J.MyocardialRemodelingafterInfarction:TheBrown,A.S.;Zhou,Y.-Q.;Foster,F.S.UltrahighFrameRateRoleofMyofibroblasts.Nat.Rev.Cardiol.2010,7,30−37.RetrospectiveUltrasoundMicroimagingandBloodFlowVisualization(20)Nagaraju,C.K.;Dries,E.;Popovic,N.;Singh,A.A.;Haemers,inMiceinVivo.UltrasoundMed.Biol.2006,32,683−691.P.;Roderick,H.L.;Claus,P.;Sipido,K.R.;Driesen,R.B.Global(36)Tusher,V.G.;Tibshirani,R.;Chu,G.SignificanceAnalysisofFibroblastActivationthroughouttheLeftVentriclebutLocalizedMicroarraysAppliedtotheIonizingRadiationResponse.Proc.Natl.FibrosisafterMyocardialInfarction.Sci.Rep.2017,7,No.10801.Acad.Sci.U.S.A.2001,98,5116−5121.2879https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
13JournalofProteomeResearchpubs.acs.org/jprArticle(37)Wang,J.;Chen,H.;Seth,A.;McCulloch,C.A.MechanicalAcutelyIsolatedPrimaryAdultRatCardiomyocytesandFibroblasts.ForceRegulationofMyofibroblastDifferentiationinCardiacJ.Mol.Cell.Cardiol.2020,143,63−70.Fibroblasts.Am.J.Physiol.:HeartCirc.Physiol.2003,285,H1871−(55)Pyagay,P.;Heroult,M.;Wang,Q.;Lehnert,W.;Belden,J.;H1881.Liaw,L.;Friesel,R.E.;Lindner,V.CollagenTripleHelixRepeat(38)Balestrini,J.L.;Chaudhry,S.;Sarrazy,V.;Koehler,A.;Hinz,B.Containing1,aNovelSecretedProteininInjuredandDiseasedTheMechanicalMemoryofLungMyofibroblasts.Integr.Biol.2012,Arteries,InhibitsCollagenExpressionandPromotesCellMigration.4,410.Circ.Res.2005,96,261−268.(39)Hinz,B.MatrixMechanicsandRegulationoftheFibroblast(56)Bauer,Y.;Tedrow,J.;deBernard,S.;Birker-Robaczewska,M.;Phenotype.Periodontol.20002013,63,14−28.Gibson,K.F.;Guardela,B.J.;Hess,P.;Klenk,A.;Lindell,K.O.;(40)Skardal,A.;Mack,D.;Atala,A.;Soker,S.SubstrateElasticityPoirey,S.;Renault,B.;Rey,M.;Weber,E.;Nayler,O.;Kaminski,N.AControlsCellProliferation,SurfaceMarkerExpressionandMotileNovelGenomicSignaturewithTranslationalSignificanceforHumanPhenotypeinAmnioticFluid-DerivedStemCells.J.Mech.Behav.IdiopathicPulmonaryFibrosis.Am.J.Respir.CellMol.Biol.2015,52,Biomed.Mater.2013,17,307−316.217−231.(41)Zelenko,Z.;Gallagher,E.J.;Tobin-Hess,A.;Belardi,V.;(57)Jin,J.;Togo,S.;Kadoya,K.;Tulafu,M.;Namba,Y.;Iwai,M.;Rostoker,R.;Blank,J.;Dina,Y.;LeRoith,D.SilencingVimentinWatanabe,J.;Nagahama,K.;Okabe,T.;Hidayat,M.;Kodama,Y.;ExpressionDecreasesPulmonaryMetastasesinaPre-DiabeticMouseKitamura,H.;Ogura,T.;Kitamura,N.;Ikeo,K.;Sasaki,S.;Tominaga,ModelofMammaryTumorProgression.Oncogene2017,36,1394−S.;Takahashi,K.PirfenidoneAttenuatesLungFibroticFibroblast1403.ResponsestoTransformingGrowthFactor-B1.Respir.Res.2019,20,(42)Tyanova,S.;Cox,J.Perseus:ABioinformaticsPlatformforNo.119.IntegrativeAnalysisofProteomicsDatainCancerResearch.InCancer(58)Zheng,L.;Zhou,Z.;Lin,L.;Alber,S.;Watkins,S.;Kaminski,SystemsBiology;vonStechow,L.,Ed.;Springer:NewYork,NY,2018;N.;Choi,A.M.K.;Morse,D.CarbonMonoxideModulatesα−Vol.1711,pp133−148.SmoothMuscleActinandSmallProlineRich-1aExpressionin(43)Daseke,M.J.;Tenkorang,M.A.A.;Chalise,U.;Konfrst,S.R.;Fibrosis.Am.J.Respir.CellMol.Biol.2009,41,85−92.Lindsey,M.L.CardiacFibroblastActivationduringMyocardial(59)Hassel,D.;Dahme,T.;Erdmann,J.;Meder,B.;Huge,A.;Stoll,InfarctionWoundHealing.MatrixBiol.2020,91−92,109−116.M.;Just,S.;Hess,A.;Ehlermann,P.;Weichenhan,D.;Grimmler,M.;(44)Ma,Y.;Halade,G.V.;Lindsey,M.L.ExtracellularMatrixandLiptau,H.;Hetzer,R.;Regitz-Zagrosek,V.;Fischer,C.;Nürnberg,P.;FibroblastCommunicationFollowingMyocardialInfarction.J.Schunkert,H.;Katus,H.A.;Rottbauer,W.NexilinMutationsCardiovasc.Transl.Res.2012,5,848−857.DestabilizeCardiacZ-DisksandLeadtoDilatedCardiomyopathy.(45)McCurdy,S.M.;Dai,Q.;Zhang,J.;Zamilpa,R.;Ramirez,T.Nat.Med.2009,15,1281−1288.A.;Dayah,T.;Nguyen,N.;Jin,Y.-F.;Bradshaw,A.D.;Lindsey,M.L.(60)Ohtsuka,T.;Nakanishi,H.;Ikeda,W.;Satoh,A.;Momose,Y.;SPARCMediatesEarlyExtracellularMatrixRemodelingFollowingNishioka,H.;Takai,Y.Nexilin:ANovelActinFilament-BindingMyocardialInfarction.Am.J.Physiol.:HeartCirc.Physiol.2011,301,ProteinLocalizedatCell−MatrixAdherensJunction.J.CellBiol.H497−H505.1998,143,1227−1238.(46)Kretzschmar,K.;Post,Y.;Bannier-Hélaouët,M.;Mattiotti,A.;(61)Ruiz-Villalba,A.;Romero,J.P.;Hernández,S.C.;Vilas-Drost,J.;Basak,O.;Li,V.S.W.;vandenBorn,M.;Gunst,Q.D.;Zornoza,A.;Fortelny,N.;Castro-Labrador,L.;SanMartin-Uriz,P.;Versteeg,D.;Kooijman,L.;vanderElst,S.;vanEs,J.H.;vanRooij,Lorenzo-Vivas,E.;García-Olloqui,P.;Palacio,M.;Gavira,J.J.;Gorka,E.;vandenHoff,M.J.B.;Clevers,H.ProfilingProliferativeCellsandB.;Stefan,J.;Ming,W.;Elena,I.;Gloria,A.;deMartinez,M.X.;TheirProgenyinDamagedMurineHearts.Proc.Natl.Acad.Sci.Miren,L.;Nuria,P.;Christoph,B.;Diego,A.;Gema,M.;Igor,P.;U.S.A.2018,115,E12245−E12254.Yong-Ri,J.;Sergey,R.;Haifeng,Y.;Beatriz,P.;David,G.-C.;(47)Samarel,A.M.FocalAdhesionSignalinginHeartFailure.Volkhard,L.;David,L.-A.;Felipe,P.Single-CellRNASequencingPfluegersArch.-Eur.J.Physiol.2014,466,1101−1111.AnalysisRevealsaCrucialRoleforCTHRC1(CollagenTripleHelix(48)Deramaudt,T.B.;Dujardin,D.;Noulet,F.;Martin,S.;RepeatContaining1)CardiacFibroblastsAfterMyocardialVauchelles,R.;Takeda,K.;Rondé,P.AlteringFAK-PaxillinInfarction.Circulation2020,142,1831−1847.InteractionsReducesAdhesion,MigrationandInvasionProcesses.(62)Staab-Weijnitz,C.A.;Fernandez,I.E.;Knüppel,L.;Maul,J.;PLoSOne2014,9,No.e92059.Heinzelmann,K.;Juan-Guardela,B.M.;Hennen,E.;Preissler,G.;(49)Zhao,X.-K.;Cheng,Y.;LiangCheng,M.;Yu,L.;Mu,M.;Li,Winter,H.;Neurohr,C.;Hatz,R.;Lindner,M.;Behr,J.;Kaminski,H.;Liu,Y.;Zhang,B.;Yao,Y.;Guo,H.;Wang,R.;Zhang,Q.FocalN.;Eickelberg,O.FK506-BindingProtein10,aPotentialNovelDrugAdhesionKinaseRegulatesFibroblastMigrationviaIntegrinBeta-1TargetforIdiopathicPulmonaryFibrosis.Am.J.Respir.Crit.CareandPlaysaCentralRoleinFibrosis.Sci.Rep.2016,6,No.19276.Med.2015,192,455−467.(50)Wang,J.;Zou,L.;Huang,S.;Lu,F.;Lang,X.;Han,L.;Song,(63)Sahoo,S.;Losordo,D.W.ExosomesandCardiacRepairAfterZ.;Xu,Z.GeneticPolymorphismsofGlutathioneS-TransferaseMyocardialInfarction.Circ.Res.2014,114,333−344.GenesGSTM1,GSTT1andRiskofCoronaryHeartDisease.(64)Borges,F.T.;Melo,S.A.;Özdemir,B.C.;Kato,N.;Revuelta,Mutagenesis2010,25,365−369.I.;Miller,C.A.;Gattone,V.H.;LeBleu,V.S.;Kalluri,R.TGF-B1−(51)Tin,A.;Scharpf,R.;Estrella,M.M.;Yu,B.;Grove,M.L.;ContainingExosomesfromInjuredEpithelialCellsActivateChang,P.P.;Matsushita,K.;Köttgen,A.;Arking,D.E.;Boerwinkle,FibroblaststoInitiateTissueRegenerativeResponsesandFibrosis.E.;Le,T.H.;Coresh,J.;Grams,M.E.TheLossofGSTM1JASN2013,24,385−392.AssociateswithKidneyFailureandHeartFailure.JASN2017,28,(65)Bang,C.;Batkai,S.;Dangwal,S.;Gupta,S.K.;Foinquinos,A.;3345−3352.Holzmann,A.;Just,A.;Remke,J.;Zimmer,K.;Zeug,A.;Ponimaskin,(52)Zhang,Z.-X.;Zhang,Y.GlutathioneS-TransferaseM1E.;Schmiedl,A.;Yin,X.;Mayr,M.;Halder,R.;Fischer,A.;(GSTM1)NullGenotypeandCoronaryArteryDiseaseRisk:AEngelhardt,S.;Wei,Y.;Schober,A.;Fiedler,J.;Thum,T.CardiacMeta-Analysis.Int.J.Clin.Exp.Med.2014,7,3378−3384.Fibroblast−DerivedMicroRNAPassengerStrand-EnrichedExosomes(53)Lighthouse,J.K.;Burke,R.M.;Velasquez,L.S.;Dirkx,R.A.;MediateCardiomyocyteHypertrophy.J.Clin.Invest.2014,124,Aiezza,A.;Moravec,C.S.;Alexis,J.D.;Rosenberg,A.;Small,E.M.2136−2146.ExercisePromotesaCardioprotectiveGenePrograminResident(66)Skalski,M.;Sharma,N.;Williams,K.;Kruspe,A.;Coppolino,CardiacFibroblasts.JCIInsight2019,4,No.e92098.M.G.SNARE-MediatedMembraneTrafficIsRequiredforFocal(54)Poulsen,P.C.;Schrölkamp,M.;Bagwan,N.;Leurs,U.;AdhesionKinaseSignalingandSrc-RegulatedFocalAdhesionHumphries,E.S.A.;Bomholzt,S.H.;Nielsen,M.S.;Bentzen,B.H.;Turnover.Biochim.Biophys.Acta(BBA),Mol.CellRes.2011,1813,Olsen,J.V.;Lundby,A.QuantitativeProteomicsCharacterizationof148−158.2880https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
14JournalofProteomeResearchpubs.acs.org/jprArticle(67)Tayeb,M.;Skalski,M.;Cha,M.;Kean,M.;Scaife,M.;Coppolino,M.InhibitionofSNARE-MediatedMembraneTrafficImpairsCellMigration.Exp.CellRes.2005,305,63−73.(68)Piquereau,J.;Ventura-Clapier,R.MaturationofCardiacEnergyMetabolismDuringPerinatalDevelopment.Front.Physiol.2018,9,959.(69)Cosme,J.;Guo,H.;Hadipour-Lakmehsari,S.;Emili,A.;Gramolini,A.O.Hypoxia-InducedChangesintheFibroblastSecretome,Exosome,andWhole-CellProteomeUsingCultured,Cardiac-DerivedCellsIsolatedfromNeonatalMice.J.ProteomeRes.2017,16,2836−2847.(70)Hamid,T.;Guo,S.Z.;Kingery,J.R.;Xiang,X.;Dawn,B.;Prabhu,S.D.CardiomyocyteNF-KBP65PromotesAdverseRemodelling,Apoptosis,andEndoplasmicReticulumStressinHeartFailure.Cardiovasc.Res.2011,89,129−138.(71)Dick,S.A.;Macklin,J.A.;Nejat,S.;Momen,A.;Clemente-Casares,X.;Althagafi,M.G.;Chen,J.;Kantores,C.;Hosseinzadeh,S.;Aronoff,L.;Wong,A.;Zaman,R.;Barbu,I.;Besla,R.;Lavine,K.J.;Razani,B.;Ginhoux,F.;Husain,M.;Cybulsky,M.I.;Robbins,C.S.;Epelman,S.Self-RenewingResidentCardiacMacrophagesLimitAdverseRemodelingFollowingMyocardialInfarction.Nat.Immunol.2019,20,29−39.(72)Abbate,A.;Bussani,R.;Liuzzo,G.;Biondi-Zoccai,G.G.L.;Barresi,E.;Mellone,P.;Sinagra,G.;Dobrina,A.;DeGiorgio,F.;Sharma,R.;Bassan,F.;Severino,A.;Baldi,F.;Biasucci,L.M.;Pandolfi,F.;Silvestri,F.;Vetrovec,G.W.;Baldi,A.;Crea,F.SuddenCoronaryDeath,FatalAcuteMyocardialInfarctionandWidespreadCoronaryandMyocardialInflammation.Heart2008,94,737−742.(73)McLellan,M.A.;Skelly,D.A.;Dona,M.S.I.;Squiers,G.T.;Farrugia,G.E.;Gaynor,T.L.;Cohen,C.D.;Pandey,R.;Diep,H.;Vinh,A.;Rosenthal,N.A.;Pinto,A.R.High-ResolutionTran-scriptomicProfilingoftheHeartDuringChronicStressRevealsCellularDriversofCardiacFibrosisandHypertrophy.Circulation2020,142,1448.(74)Farbehi,N.;Patrick,R.;Dorison,A.;Xaymardan,M.;Janbandhu,V.;Wystub-Lis,K.;Ho,J.W.;Nordon,R.E.;Harvey,R.P.Single-CellExpressionProfilingRevealsDynamicFluxofCardiacStromal,VascularandImmuneCellsinHealthandInjury.eLife2019,8,No.e43882.2881https://doi.org/10.1021/acs.jproteome.1c00098J.ProteomeRes.2021,20,2867−2881
此文档下载收益归作者所有