Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al

Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al

ID:81816769

大小:2.26 MB

页数:7页

时间:2023-07-21

上传者:U-14522
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第1页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第2页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第3页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第4页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第5页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第6页
Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al_第7页
资源描述:

《Magnetic Gap of Fe-Doped BiSbTe 2 Se Bulk Single Crystals Detected by Tunneling Spectroscopy and Gate-Controlled Transports - Yano et al》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterMagneticGapofFe-DopedBiSbTe2SeBulkSingleCrystalsDetectedbyTunnelingSpectroscopyandGate-ControlledTransports,+RikizoYano,*AndreiKudriashov,HishiroT.Hirose,TaikiTsuda,HiromiKashiwaya,TakaoSasagawa,,+AlexanderA.Golubov,VasilyS.Stolyarov,*andSatoshiKashiwaya*CiteThis:J.Phys.Chem.Lett.2021,12,4180−4186ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Topologicalinsulatorswithbrokentime-reversalsymmetryandtheFermilevelwithinthemagneticgapattheDiracconeprovidesexotictopologicalmagneto-electronicphenomena.Here,weintroduceanimprovedmagneticallydopedtopologicalinsulator,Fe-dopedBiSbTe2Se(Fe-BSTS)bulksinglecrystal,withanidealFermilevel.Scanningtunnelingmicroscopyandspectroscopy(STM/STS)measurementsrevealedthatthesurfacestatepossessesaDiracconewiththeDiracpointjustbelowtheFermilevelby12meV.ThenormalizeddI/dVspectrasuggestagapopeningwithΔmag∼55meV,resultingintheFermilevelwithintheopenedgap.Ionic-liquidgated-transportmeasurementsalsosupporttheDiracpointjustbelowtheFermilevelandthepresenceofthemagneticgap.Thechemicalpotentialofthesurfacestatecanbefullytunedbyionic-liquidgating,andthustheFe-dopedBSTSprovidesanidealplatformtoinvestigateexoticquantumtopologicalphenomena.opologicalinsulators(TIs)possessauniquetime-reversaltetradymites.ThetetradymiteshavelayeredcrystalstructuresTinvariantsurface(edge)state,theso-calledmassless(Figure1a).WeshouldcareabouttheunintendedintergrowthDiraccone(e.g.,linearbanddispersion),whichoffershigh-ofmagneticimpuritiesofFe−SecompoundspromotedbyFe1−10doping.25−27Thisintergrowthmayoccuroveracertainmobilitycarriersandpromisingspinfunctionalities.Breakingtime-reversalsymmetryonTIsbyapplyingalargetemperaturerangeandbeeasilydrivenbyaninhomogeneousmagneticfieldormagnetizationannihilatesthetime-reversalFedistribution.Indeed,owingtospecialcaresuchasinvariantpoint(theDiracpoint:DP)andopensthemagnetichomogeneousmixingathightemperaturesandrapidgap,Δmag(theso-calledmassiveDiraccone).Themassivequenching,wegrewFe-dopedBi2Te2SeandFe-dopedDiracstateinducesremarkabletopologicalphenomena,suchasBiSbTe2Se(Fe-BSTS)ashighbulk-insulatingmagnetically28,29thequantumanomalousHall(QAH)effectandtheimagedopedTIsandreportedobservationofunusualproximity28DownloadedviaUNIVOFCONNECTICUTonMay16,2021at09:22:52(UTC).magneticmonopole.Besides,fabricatingheterostructureswitheffects.However,thedetailedelectronicstructure,inothermagneticinsulatorsorsuperconductors,thechiraledgeparticular,thelocationoftheDPandEF,isstillanopenstatesproducetopologicalelectromagnetic(ME)effectsandquestion.Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.virtualexoticelementaryparticlestates,e.g.,axionMEtermsHere,wereportthedetailedelectronicbandstructureoftheandMajoranaFermions.2,11−13Fe-BSTS.ItsschematicbandstructuresaboveandbelowtheTherearetwokeyfactorsintheobservationofthesurface-Curietemperature(TCuri)aresummarizedinFigure1b,c,respectively.Weperformedinsitucleavagescanningtunnelingdrivenphenomena:idealFermilevelEF(withinthemagneticmicroscopyandspectroscopy(STM/STS)measurements.Fe-gapandthebulkbandgap)andhighbulkinsulatingnature.FornonmagneticTIs,tremendouseffortshavebeenputintoBSTShasahighbulkinsulatingnaturewithabandgapofΔbulk∼400meV,andtheFermilevelEFisfoundtobeclosetothealloyingappropriateBi−Sb−Te−Secompositionsconsideringdefectchemistry14−18toovercomethetwodrawbacks.OntheDP(EDP).Furthermore,wediscoveredamagneticgapΔmagattheDP.Thetransportmeasurementstunedwithelectric-otherhand,achievinghighbulkinsulatingmagneticTIisstilldouble-layertransistors(EDLTs)alsosupportthesesurfacechallenging.Thecommonapproachistoutilizeathinfilmof19−23magneticTIstoreducethebulkconductioncontribution.WhileCr-doped(Bi,Sb)Se19andMnBiTe24thinfilmsReceived:March17,20212324exhibittheQAHeffect,bulkmagneticTIswillprovideAccepted:April12,2021complicatedheterostructuredeviceswithahighdegreeofPublished:April26,2021freedom.Inthecontextofsearchingfordesirablebulkmaterials,wefocusonFeasadopantinto(Bi,Sb)sitesinBibased©2021AmericanChemicalSocietyhttps://doi.org/10.1021/acs.jpclett.1c008694180J.Phys.Chem.Lett.2021,12,4180−4186

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(QL)ofFe-BSTS,asshowninFigure1a.TheseQLsareweaklybondedbyvanderWaalsforcesandterminatedbychalcogenatoms(Se,Te).AlocalSTMstudyoftheflatterracesrevealedwell-orderedhexagonallatticeswithrandomlyarrangedatomicdefects,reflectingitshomogeneoussub-stitutionof(Bi,Sb,Fe)and(Te,Se)sites(seeFigure1a,theinset).Weconfirmedthatthespatialelectrondensitydistributionneardefects(notshownhere)showedatypical30−32spectrumforotherBibasedtetradymites.Theformoffingerprintsdependsonthetypeofdefectsandtheirdepthin33theQLs;e.g.,thesurfacehasbrighttriangulardotscorrespondingtothechalcogenvacanciesdescribedinref34.Figure2ashowstheaveragedSTSspectrameasuredat4.2K(blueline)and77K(red).TherapidrisearoundVT=−100mVand300mVcorrespondstothebulkvalenceband(BVB)andbulkconductionband(BCB),respectively,andthusthebulkbandgapisΔbulk≃400meV(markedasagreen-whitegradient).Thezero-biasvoltage(FermienergyEF)islocatedFigure1.SummarizedbandstructuresandscanningtunnelingclosetotheBVB,ahallmarkofap-typesemiconductor.Withinmicroscopy.(a)ThecrystalstructureofFe-BSTS.Theupperandbottomfiguresindicatethetopviewandthelayeredstructure,thebandgap,almostlinearspectraappearedregardlessoftherespectively.Thearrowindicatesasinglequintuplelayer(QL).Bandmeasurementspots(seetheinsetofFigure2a),whichisastructuresofFe-BSTS(b)aboveand(c)belowtheCurietopologicallyprotectedfeature,andthelinearbandrepresentstemperature.TheparametersweredeterminedbySTMandgate-thesurfacestates(theDiraccone).TheDPwasestimatedastunedtransports.Δmag=55meV,EDP=−12meV,andEact,b=33.3EDP∼−12meVfromtheextrapolationofthelinearpartofthemeV(seetextformoredetails).(d)A200nm×200nmSTMimagespectra(insetofFigure2a).Furthermore,thenormalized(biasvoltageVT=183mVandtunnelcurrentIT=104pA)ofthein35spectrumofdI/dV(4.2K)dividedbythedI/dV(77K)situcleavedcrystal.Atomicallyflatterracesareseparatedby1.03nmheightsteps(thebottomleftinsetdepictstheprofilealongthedashedrevealssomegapsaroundtheDP(seeFigure2b).Basedon28,36lineoftheSTMimage),andtheheightoftheterracescorrespondstopreviousreports(TCurri<50K)andothermagnetically22,23QL.Inthetop-rightinset,a10nm×10nmatomicallyresolvedimagedopedtetradymitesystems(TCurri∼10K),themeasure-withatypicalsetofdefects.menttemperaturesshouldcrosstheCurietemperatureofthepresentmaterial,andtheobservedgaprepresentsthemagneticstates.CombiningmicroscopicSTSandmacroscopictransportgapattheDPwithasizeofΔmag∼55meV,whichis36−38resultsconsistentlyensuresanidealEFpositionwithinΔmagatcomparabletoothermagneticTIs.Welinkthefactthataverylowtemperature.themagneticgapispartiallyfilledintheregionoftheDiracOwingtotheexcellentcleavagepropertyofFe-BSTS,sizablepointbecauseofthetemperaturefluctuationsandthelargecrystalswerecleavedinthechamber,andanatomicallyflatnumberofatomicdefectssaturatingthemagneticgapbysurfaceenablingSTM/STSmeasurementswasobtained.STMelectronsgivinganonzerobackground.Thegapatthetime-mappingwithaconstantcurrentof104pAandabiasvoltageconservedDPisahallmarkofthebrokentime-reversalof183mV(Figure1d)showclearatomicallyflatterraces.Thesymmetryduetoferromagneticordering,whereastypicalother39observedstepheightwas1.03nm(Figure1d,inset),whichorigins,e.g.,theKondoeffect,producethegapstructureatcorrespondstoafiveatomiclayer,theso-calledquintuplelayertheEF.Figure2.Scanningtunnellingspectroscopy.(a)Averagetunnellingspectraat4.2K(blueline)and77K(redline).Theinsetshowsahighlightaroundthezero-biasvoltage.Thedashedlinerepresentsalineardispersionapproximation,andthearrowindicatestheestimatedDiracpointat−12mV.(b)NormalizeddI/dVspectrumof4.2Kbythe77Kspectra.Aclear55mVgapappearsneartheDiracpoint.InsetsareschematicsurfacestructuresbelowtheCurietemperature.4181https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.ExperimentalsetupsandtransportpropertiesofaFe-BSTS.(a)Temperaturedependenceofresistivitywithandwithoutgatingvoltage.Thelabel“w/ogating”indicatesthemeasurementperformedjustafterloadingtheionic-liquid(IL)butwithoutapplyingexternalgatingvoltage.TheinsetistheschematicofatransportmeasurementsetupwithILgatingonabulksinglecrystal.(b)Hallresistivityforvariousgatingvoltagesat2K.Theinsetshowsazoomed-inplotforVG=+2V.Dashedlinesforeachplotrepresentthebestfittingresultsbythetwo-bandmodel.(c)ChangeinsheetmagnetoconductanceofNo-IL(withoutIL)withaperpendicularmagneticfieldatseveraltemperaturesrangingfrom2to50K.Thedashedblacklinesrepresentfittingresultsat2−30KbytheHLNmodel.TheinsetshowsapolarplotofthemagnetoresistanceoftheNo-ILcrystalwithamagneticfieldof8Tat2K.(d)Temperaturedependencesofthecarrier(toppanel)andmobility(bottompanel)forthebulkandsurfaceoftheas-grownFe-BSTScrystal(No-IL).TheinsetisthetemperaturedependenceofthephasecoherencelengthobtainedusingtheHLNmodel.ThedashedlineisafittingresultforT−1/2above20K.TheinsetofFigure2bshowstheschematicbandstructureobservedinnonmagneticTIs,e.g.,inrefs45and46.ThedeterminedfromtheSTSdI/dVspectra.Themostprominentmagnetotransportpropertiesalsochangearoundthistemper-featureisthatthelocationoftheFermilevelisjustabovetheature,asdiscussedlaterinthetransportsection.Therefore,weDPandwithinthemagneticgap,whichisanidealsituationtoclaimthisupturncanbeascribedtothegapopeningnear10K.observeexoticmagneticgap-originphenomenadescribedinThehigh-temperatureresistivityfollowedthree-dimensionaltheintroductionsection.variablerangehopping,whichiscommonlyobservedinTIs14,17,45,47Weinvestigatedthetransportpropertiesofthegate-withhighlyinsulationinthebulk.FromthestandardcontrolledFe-BSTSbulksinglecrystaltodeterminetheArrheniusplot,thevalueoftheactivationenergyforthebulklocationsoftheEFandtheEDP.Theionic-liquid(IL)gatinginwasdeterminedtoEact,b=33.3meV.ReferringtoFigure1b,c,EDLTenableseffectivecarriercontroljustnearthesurfacethevaluesofEDP,Δmag,andEact,bareconsistentwiththe(typicaleffectivedepth∼severalnanometers).40−43Ingeneral,estimatedbandstructure,i.e.,theFermilevelshouldbelocatedthistechniqueisappliedtothin-filmmaterialsnowadays,anditwithinthemagneticgapatlowtemperatures.isdifficulttoachieveambipolarconductionforbulkThedominantsurfacecontributionwasconfirmedfrommaterials.44Incontrast,weobservedtheambipolarsurfacemagnetoresistance(MR=(ρ(H)−ρ(0))/ρ(0)),magneto-carrierconductionofFe-BSTSevenusingabulkcrystal,owingconductance,andHallresistivity(Figure3b).DetailedMRtoitshighsurfacemobility.TheexperimentalsetupisshownindataaresummarizedintheSupportingInformation.The2-foldtheinsetofFigure3a.FurtherdetailsareprovidedintherotationalsymmetryintheMRisacharacteristicofthetwo-SupportingInformation.BecauseloadingtheILitselfaffectsdimensionalelectronnaturefromthesurfacestates(insetofcarrierdensity,welabeled“No-IL”and“w/ogating”astheFigure3c).Figure3cshowsthesheetmagnetoconductancestateoftheas-growncrystalwithoutILandjustafterloadingandfittingresults(blacklines)usingthesimpleHikami−46,48ILbutwithoutvoltage-control,respectively.ThepositivegateLarkin−Nagaoka(HLN)modelforweakantilocalizationvoltageprovideselectroncarrierdopingatthetopofthe(WAL):crystal.Allgate-voltagecontrollingtookplaceaftercoolingtoÄÅÅÉÑÑeB2ÅÅijj1yzzijjByzzÑÑ230Kinavacuumedchambertopreventchemicalreactions.GB()−≃G(0)αÅÅÅÅΨ+−jjzzlnjjzzÑÑÑÑAsafirststep,weevaluatedtheas-grownFe-BSTSbulk2π2ℏÅÅjj2BzzjjBzzÑÑÅÇkϕϕ{k{ÑÖcrystal(No-IL).Thetemperaturedependenceofresistivityshowedinsulatingabove50K,whereastheslopedecreasedwhereα,e,ℏ,andΨaretheWALcoefficient,electronicbelow25K,asshowninFigure3a.Interestingly,theresistivitycharge,reducedPlanckconstant,anddigammafunction,increasedagainbelow10Kanddidnotfollowthetypical−logrespectively.Theα∼−1wasobtainedatthelow-temperatureTdependenceexpectedfortheKondoeffectwhichisoftenregion.Fromthecharacteristicmagneticfield,Bϕ,the4182https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.SchematicbandstructureandanalyticalresultsforIL-gatedFe-BSTS.(a)Schematicbandstructureandtransfercharacteristics(RtotalvsVG)oftheEDLT-basedFe-BSTSbulkcrystalat230K.ThedottedlinescorrespondtotheestimatedBCB,BVB,andFermienergylevelofbulkbandsandVG.Voltagedependenceof(b)carrierand(c)mobilityforbulk(red)andsurface(blue).Thecircleandtrianglesymbolsrepresenttheaboveparametersofholesandelectrons,respectively.ThestarandsquaresymbolsareestimatedattheVGpositionfortheNo-ILandw/ogatingcases,respectively.ℏapproximately10KwheremostmagneticTIsshowacoherencelengthlϕcanbeevaluatedasBϕ=.Almost22,234elϕferromagnetictransition.TheHallresistivityshowedperfectfittingresultswereobtainedinthetemperaturerangeofgentlecurves,indicatingthatatleasttwocomponentsshould2−50K.Thepower-lawfitofthecoherencelengthabove20Kexist.Here,weappliedthestandardtwo-bandmodel(withinyieldedT−0.45∼T−1/2,indicatingtwo-dimensionaldecay46,49theDrudemodelinlow-field)fittingtotheHallresistivity,(insetofFigure3d).Interestingly,thecoherencelengthbelowassumingthesurfaceandbulkcontributionsdescribedinref10KdeviatesfromtheT−1/2curveandissuppressedat50.223()RRH,surfρρbulk++H,bulksurfBRH,surfRH,bulk(RH,surf+RH,bulk)Bρ()B=xy222()ρρsurf+++H,bulk(RRBH,surfH,bulk)whereRH(ρ)surf/bulkrepresentstheHallcoefficients(resistivity)holedoping.AlltheHallresistanceshowedgentlecurveslikeforsurface/bulk,respectively.Thismodeliswidelyappliedfor17,51theNo-ILcase,includingVG=+2and+1.2VwhichlookTIs.Usingthestandardrelation,wecanobtainthesamplelinear.AsshownintheinsetofFigure3b,theslopeofVG=+2t1parametersasfollows:R=,R=,andVwasnegative,indicatingsuccessfulelectrondopingbytheILH,surfensurfH,bulkenbulkRgating.MRwasalsochangedbygating(FigureS3d).TheseH,surf/bulkμsurf/bulk=ρ,wheret,nsurf,andnbulkarethesamplefactsindicatethattheILgatingontothebulkcrystalachievedsurf/bulkthicknessandcarrierdensitiesofthesurfaceandbulk,bipolartransport.Figure4a−cshowssummarizedfittingresultsfromthetwo-respectively.Asaresult,weobtainedanexcellentfit(dashedbandmodel.ThebulkholecarrierslightlydecreasedwithlinesinFigure3bandFigureS3cforthetemperatureelevatinggatevoltage,whilethesurfacecarriershowedthep−dependenceoftheNo-ILsample).Thefittingparametersncarrier-typetransitionaround+0.5V.ThesurfacemobilityobtainedaresummarizedinFigure3d.ThetemperaturedrasticallydroppedtothebulkvaluewhentheVG=+1.2Vdependenceofthecarrierdensityandmobilityshowedtypicaland−1V,indicatingthatthechemicalpotentialofVG=1.2p-typesemiconductingbehavior,ensuringthevalidityofthe2(−1)VislocatedneartheBCB(BVB).Theanalysesalsoanalyticalfitting.Thesurfacemobilityexceeded1500cm/(Vrevealedthatthesurfacecontributionalsochangedfrom26%s),whichmakestheplotofHallresistivitycurved.EDLT(No-IL)to60%(2V),comparabletopreviousreportsusingagatingmainlytunesthesesurfacestatesandthusenablesusto5345thin-filmsampleandnanowires.Consideringthetrendsofevaluatethesurfacestates,evenusingabulkcrystal.thegatedproperties,wecanestimatethelocationoftheFigure4ashowsthegate-voltagedependenceofresistanceatsurfacechemicalpotentialofNo-ILandw/ogating.The230K,wherethebulkcontributiondominatesalmosttheappropriatepositionsare−0.25VforNo-ILand−0.5Vforw/entiretransport.Despiteasmallchangeintheresistance,aogating,resultinginsmoothlyconnectedcarrierdensitylines.smallhystereticloopappeared.ThelooptracedthesamecyclicThehighestmobilityshouldreflectthenearestchemicalloopsatleastthreetimesevenatdifferentsweepspeeds(1−2potentialtotheDP,andthus,theFermienergyoftheas-mV/s).Thislooprepresentsonlyaunipolarnaturesimilartogrowncrystal(No-IL)isclosesttotheDP.Therefore,thisIL-4452thebulkMoS2and(Bi1−xSbx)2Te3thinfilmatthisgated-transportmeasurementalsoindicatesthatthelocationoftemperature.However,low-temperaturetransportdrasticallytheDPisjustbelowtheFermienergylevel.ToachievefineEFaffectedtheIL-gatingeffect.Figure3bshowstheHalltuningjustontotheDPusingILgating,thepromisinggateresistanceat2Kfordifferentgatevoltages.Notethat,evenvoltageisapproximately0.25V,wherethep−ncarrier-typeforjustloadingtheILontothesample,theresistancedrasticallythesurfacecarrierschanges.Theseanalyseswiththetwo-banddroppedatlowtemperatures(Figure3a),andtheslopeofthemodelconsistentlyexplainallthegated-transportmeasure-Hallresistancedecreased,meaningthattheILitselfleadstomentsandsupporttheSTM/STSconclusionoftheidealEF4183https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterandDPpositions.Therefore,weconcludethatFe-BSTSisaTaikiTsuda−AppliedPhysics,NagoyaUniversity,Nagoyapromisingbulkmaterialforobservingquantumphenomena464-8603,JapandrivenbythemassiveDiracconeatverylowtemperaturesHiromiKashiwaya−NationalInstituteofAdvancedwhereintheexcitationiswellsuppressedbythesurroundingIndustrialScienceandTechnology(AIST),Tsukuba305-temperature.8568,JapanInsummary,weinvestigatedthesurfacebandstructuresofTakaoSasagawa−LaboratoryforMaterialsandStructures,Fe-BSTSviaSTS/STMandIL-gated-transportmeasurements.TokyoInstituteofTechnology,Yokohama226-8503,JapanThelocalSTSmeasurementshowedtwonotablefeaturesofAlexanderA.Golubov−TQPSSLab,CenterforPhotonicsthesurfacestate:theDPneartheFermilevelandthegappedand2DMaterials,MoscowInstituteofPhysicsandstatesattheDP(4Knormalizedspectra),implyingamagneticTechnology,Dolgoprudny,MoscowOblast141700,Russia;gapopening.TheIL-gated-transportmeasurementcombinedFacultyofScienceandTechnologyandMESA+Instituteofwiththetwo-bandanalysesalsosupportsthattheDPisnearNanotechnology,Enschede7500AE,TheNetherlandstheidealposition.BothresultscanconsistentlybeunderstoodCompletecontactinformationisavailableat:withintheframeworkofthebandstructureofFigure1b,c,https://pubs.acs.org/10.1021/acs.jpclett.1c00869ensuringthemagneticgapandtheFermienergyabovetheDP.Therefore,theFe-BSTSbulksinglecrystalisapromisingAuthorContributionsplatformfordetectingexoticphenomenasuchastheQAH+R.Y.andV.S.S.contributedequallytothiswork.effect.Notes■Theauthorsdeclarenocompetingfinancialinterest.METHODSWegrewsinglecrystalsofFe-BSTSusingamodifiedBridgman36methodreferredtoasFe-orMn-dopedBi2Se3,Fe-doped■ACKNOWLEDGMENTS2829Bi2Te2Se,andFe-dopedBSbT2Se.ThedetailsofcrystalTheauthorsthankProf.YukioTanakaandDr.KoheiTsumuragrowthandsamplecharacterizationaredescribedintheforfruitfuldiscussions.ThisstudywassupportedbyJSTSupportingInformation.STM/STSmeasurementswereCREST(GrantNo.JPMJCR16F2)andKAKENHI(GrantperformedusingJT-SPM(SPECS).ThecrystalswereNos.JP15H05851,15H05853,16H03847,18H01243,mechanicallycleavedinanultrahighvacuum(UHV,∼10−1020H00131,21H04652,and21K13854),ResearcherExchangembar).ThetransportpropertieswereevaluatedusingaPPMSProgrambetweenJSPSandRFBR(JPJSBP120194816),and(QuantumDesignInc.)withanexternalgate-voltagesource/JSPSCore-to-Coreprogram“OxideSuperspin”(OSS)currentmonitorR6244(Advantest).DetailsoftheIL-gatinginternationalnetwork(GrantJPJSCCA20170002).CrystalconfigurationareprovidedintheSupportingInformation.growthwassupportedbyCollaborativeResearchProjectsinMSL-TokyoTech.,Japan.A.A.G.andV.S.S.acknowledgethe■ASSOCIATEDCONTENTGrantRSF-ANR20-42-09033.*sıSupportingInformationTheSupportingInformationisavailablefreeofchargeat■REFERENCEShttps://pubs.acs.org/doi/10.1021/acs.jpclett.1c00869.(1)Hasan,M.Z.;Kane,C.L.Colloquium:TopologicalInsulators.Crystalpreparationandcharacterization,EDLTdeviceRev.Mod.Phys.2010,82,3045−3067.fabricationprocess,anddetailedmagnetotransport(2)Qi,X.-L.;Zhang,S.-C.TopologicalInsulatorsandSuper-propertiesoftheas-growncrystal(PDF)conductors.Rev.Mod.Phys.2011,83,1057−1110.(3)Kou,L.;Ma,Y.;Sun,Z.;Heine,T.;Chen,C.TwoDimensionalTopologicalInsulators:ProgressandProspects.J.Phys.Chem.Lett.■AUTHORINFORMATION2017,8,1905−1919.CorrespondingAuthors(4)Ando,Y.TopologicalInsulatorMaterials.J.Phys.Soc.Jpn.2013,RikizoYano−InstituteofMaterialsandSystemsfor82,102001.(5)Si,N.;Yao,Q.;Jiang,Y.;Li,H.;Zhou,D.;Ji,Q.;Huang,H.;Li,SustainabilityandAppliedPhysics,NagoyaUniversity,H.;Niu,T.RecentAdvancesinTin:FromTwo-DimensionalNagoya464-8603,Japan;orcid.org/0000-0003-1959-QuantumSpinHallInsulatortoBulkDiracSemimetal.J.Phys.Chem.311X;Email:yano-rikizo@nagoya-u.jpLett.2020,11,1317−1329.VasilyS.Stolyarov−TQPSSLab,CenterforPhotonicsand(6)Kane,C.L.;Mele,E.J.Z2TopologicalOrderandtheQuantum2DMaterials,MoscowInstituteofPhysicsandTechnology,SpinHallEffect.Phys.Rev.Lett.2005,95,146802.Dolgoprudny,MoscowOblast141700,Russia;Dukhov(7)Xue,H.;Lv,W.;Wu,D.;Cai,J.;Ji,Z.;Zhang,Y.;Zeng,Z.;Jin,ResearchInstituteofAutomatics(VNIIA),Moscow127055,Q.;Zhang,Z.TemperatureDependenceofSpin−OrbitTorquesinRussia;orcid.org/0000-0002-5317-0818;NearlyCompensatedTb21Co79FilmsbyaTopologicalInsulatorEmail:vasiliy.stoliarov@gmail.comSb2Te3.J.Phys.Chem.Lett.2021,12,2394−2399.SatoshiKashiwaya−AppliedPhysics,NagoyaUniversity,(8)Fu,L.;Kane,C.L.;Mele,E.J.TopologicalInsulatorsinThreeDimensions.Phys.Rev.Lett.2007,98,106803.Nagoya464-8603,Japan;Email:s.kashiwaya@nagoya-u.jp(9)Pi,S.-T.;Wang,H.;Kim,J.;Wu,R.;Wang,Y.;Lu,C.-K.NewAuthorsClassof3DTopologicalInsulatorinDoublePerovskite.J.Phys.Chem.Lett.2017,8,332−339.AndreiKudriashov−TQPSSLab,CenterforPhotonicsand(10)Tian,L.;Liu,Y.;Meng,W.;Zhang,X.;Dai,X.;Liu,G.Spin-2DMaterials,MoscowInstituteofPhysicsandTechnology,OrbitCoupling-DeterminedTopologicalPhase:TopologicalInsulatorDolgoprudny,MoscowOblast141700,RussiaandQuadraticDiracSemimetals.J.Phys.Chem.Lett.2020,11,HishiroT.Hirose−LaboratoryforMaterialsandStructures,10340−10347.TokyoInstituteofTechnology,Yokohama226-8503,Japan;(11)Qi,X.-L.;Hughes,T.L.;Zhang,S.-C.TopologicalFieldTheoryorcid.org/0000-0001-5912-0881ofTime-ReversalInvariantInsulators.Phys.Rev.B2008,78,195424.4184https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(12)Majorana,E.;Maiani,L.EttoreMajoranaScientificPapers;TopologicalInsulatorswithHighBulkInsulation.Condens.MatterSpringer,2006;pp201−233.2019,4,9.(13)Burset,P.;Lu,B.;Tkachov,G.;Tanaka,Y.;Hankiewicz,E.M.;(30)Ko,W.;Park,J.;Jeon,I.;Kim,H.W.;Kwon,H.;Oh,Y.;Kim,J.Trauzettel,B.SuperconductingProximityEffectinThree-Dimen-S.;Suh,H.;Hwang,S.W.;Chung,C.LocalPotentialFluctuationofsionalTopologicalInsulatorsinthePresenceofaMagneticField.TopologicalSurfaceStatesinBi1.5Sb0.5Te1.7Se1.3ObservedbyLandauPhys.Rev.B2015,92,205424.LevelSpectroscopy.Appl.Phys.Lett.2016,108,083109.(14)Kushwaha,S.;Pletikosic,I.;Liang,T.;Gyenis,A.;Lapidus,S.;́(31)Ko,W.;Jeon,I.;Kim,H.W.;Kwon,H.;Kahng,S.-J.;Park,J.;Tian,Y.;Zhao,H.;Burch,K.;Lin,J.;Wang,W.;etal.Sn-DopedKim,J.S.;Hwang,S.W.;Suh,H.AtomicandElectronicStructureofBi1.1Sb0.9Te2SBulkCrystalTopologicalInsulatorwithExcellentanAlloyedTopologicalInsulator,Bi1.5Sb0.5Te1.7Se1.3.Sci.Rep.2013,3,Properties.Nat.Commun.2016,7,11456.2656.(15)Ren,Z.;Taskin,A.;Sasaki,S.;Segawa,K.;Ando,Y.Optimizing(32)Stolyarov,V.S.;Sheina,V.A.;Khokhlov,D.A.;Vlaic,S.;Pons,Bi2−xSbxTe3−ySeySolidSolutionstoApproachtheIntrinsicTopo-S.;Aubin,H.;Akzyanov,R.S.;Vasenko,A.S.;Menshchikova,T.V.;logicalInsulatorRegime.Phys.Rev.B2011,84,165311.Chulkov,E.V.;etal.Disorder-PromotedSplittinginQuasiparticle(16)Pan,Y.;Wu,D.;Angevaare,J.R.;Luigjes,H.;Frantzeskakis,E.;InterferenceatNestingVectors.J.Phys.Chem.Lett.2021,12,3127−Jong,N.d.;Heumen,E.v.;Bay,T.V.;Zwartsenberg,B.;Huang,Y.3134.K.;etal.LowCarrierConcentrationCrystalsoftheTopological(33)Netsou,A.-M.;Muzychenko,D.A.;Dausy,H.;Chen,T.;Song,InsulatorBi2−xSbxTe3−ySey:aMagnetotransportStudy.NewJ.Phys.F.;Schouteden,K.;VanBael,M.J.;VanHaesendonck,C.Identifying2014,16,123035.NativePointDefectsintheTopologicalInsulatorBi2Te3.ACSNano(17)Ren,Z.;Taskin,A.;Sasaki,S.;Segawa,K.;Ando,Y.LargeBulk2020,14,13172−13179.ResistivityandSurfaceQuantumOscillationsintheTopological(34)Hanaguri,T.;Igarashi,K.;Kawamura,M.;Takagi,H.;InsulatorBi2Te2Se.Phys.Rev.B2010,82,241306.Sasagawa,T.Momentum-ResolvedLandau-levelSpectroscopyof(18)Stolyarov,V.S.;Yakovlev,D.S.;Kozlov,S.N.;Skryabina,O.DiracSurfaceStateinBi2Se3.Phys.Rev.B2010,82,081305.V.;Lvov,D.S.;Gumarov,A.I.;Emelyanova,O.V.;Dzhumaev,P.S.;(35)Stolyarov,V.S.;Pervakov,K.S.;Astrakhantseva,A.S.;Shchetinin,I.V.;Hovhannisyan,R.A.;etal.JosephsonCurrentGolovchanskiy,I.A.;Vyalikh,D.V.;Kim,T.K.;Eremeev,S.V.;MediatedbyBallisticTopologicalStatesinBi2Te2.3Se0.7SingleVlasenko,V.A.;Pudalov,V.M.;Golubov,A.A.;etal.ElectronicNanocrystals.Commun.Mater.2020,1,38.StructuresandSurfaceReconstructionsinMagneticSuperconductor(19)Chang,C.-Z.;Zhang,J.;Feng,X.;Shen,J.;Zhang,Z.;Guo,M.;RbEuFe4As4.J.Phys.Chem.Lett.2020,11,9393−9399.Li,K.;Ou,Y.;Wei,P.;Wang,L.-L.;etal.ExperimentalObservationof(36)Chen,Y.;Chu,J.-H.;Analytis,J.;Liu,Z.;Igarashi,K.;Kuo,H.-theQuantumAnomalousHallEffectinaMagneticTopologicalH.;Qi,X.;Mo,S.-K.;Moore,R.;Lu,D.;etal.MassiveDiracFermionInsulator.Science2013,340,167−170.ontheSurfaceofaMagneticallyDopedTopologicalInsulator.Science(20)Chang,C.-Z.;Tang,P.;Wang,Y.-L.;Feng,X.;Li,K.;Zhang,Z.;2010,329,659−662.Wang,Y.;Wang,L.-L.;Chen,X.;Liu,C.;etal.Chemical-Potential-(37)Wray,L.A.;Xu,S.-Y.;Xia,Y.;Hsieh,D.;Fedorov,A.V.;SanDependentGapOpeningattheDiracSurfaceStatesofBi2Se3Hor,Y.;Cava,R.J.;Bansil,A.;Lin,H.;Hasan,M.Z.ATopologicalInducedbyAggregatedSubstitutionalCrAtoms.Phys.Rev.Lett.InsulatorSurfaceunderStrongCoulomb,MagneticandDisorder2014,112,056801.Perturbations.Nat.Phys.2011,7,32−37.(21)Liu,W.;West,D.;He,L.;Xu,Y.;Liu,J.;Wang,K.;Wang,Y.;(38)Xu,S.-Y.;Neupane,M.;Liu,C.;Zhang,D.;Richardella,A.;vanderLaan,G.;Zhang,R.;Zhang,S.;etal.Atomic-ScaleMagnetismWray,L.A.;Alidoust,N.;Leandersson,M.;Balasubramanian,T.;ofCr-DopedBi2Se3ThinFilmTopologicalInsulators.ACSNanoSánchez-Barriga,J.;etal.HedgehogSpinTextureandBerry’sPhase2015,9,10237−10243.TuninginaMagneticTopologicalInsulator.Nat.Phys.2012,8,616−(22)Collins-McIntyre,L.J.;Harrison,S.E.;Schönherr,P.;Steinke,622.N.-J.;Kinane,C.J.;Charlton,T.R.;Alba-Veneroa,D.;Pushp,A.;(39)Tsukahara,N.;Shiraki,S.;Itou,S.;Ohta,N.;Takagi,N.;Kawai,Kellock,A.J.;Parkin,S.S.P.;etal.MagneticOrderinginCr-DopedM.EvolutionofKondoResonanceFromaSingleImpurityMoleculeBi2Se3ThinFilms.EPL2014,107,57009.totheTwo-DimensionalLattice.Phys.Rev.Lett.2011,106,187201.(23)Baker,A.;Figueroa,A.;Kummer,K.;Collins-McIntyre,L.J.;(40)Misra,R.;McCarthy,M.;Hebard,A.F.ElectricFieldGatingHesjedal,T.;vanderLaan,G.MagneticProximity-EnhancedCuriewithIonicLiquids.Appl.Phys.Lett.2007,90,052905.TemperatureofCr-DopedBi2Se3ThinFilms.Phys.Rev.B2015,92,(41)Ueno,K.;Nakamura,S.;Shimotani,H.;Ohtomo,A.;Kimura,094420.N.;Nojima,T.;Aoki,H.;Iwasa,Y.;Kawasaki,M.Electric-Field-(24)Deng,Y.;Yu,Y.;Shi,M.Z.;Guo,Z.;Xu,Z.;Wang,J.;Chen,X.InducedSuperconductivityinanInsulator.Nat.Mater.2008,7,855−H.;Zhang,Y.QuantumAnomalousHallEffectinIntrinsicMagnetic858.TopologicalInsulatorMnBi2Te4.Science2020,367,895−900.(42)Saito,Y.;Nojima,T.;Iwasa,Y.Gate−InducedSuper-(25)Ji,H.;Allred,J.M.;Ni,N.;Tao,J.;Neupane,M.;Wray,A.;Xu,conductivityinTwo-DimensionalAtomicCrystals.Supercond.Sci.S.;Hasan,M.Z.;Cava,R.J.BulkIntergrowthofaTopologicalTechnol.2016,29,093001.InsulatorwithaRoom-TemperatureFerromagnet.Phys.Rev.B2012,(43)Ye,J.;Zhang,Y.J.;Akashi,R.;Bahramy,M.S.;Arita,R.;Iwasa,85,165313.Y.SuperconductingDomeinaGate-TunedBandInsulator.Science(26)Stolyarov,V.S.;Remizov,S.V.;Shapiro,D.S.;Pons,S.;Vlaic,2012,338,1193−1196.S.;Aubin,H.;Baranov,D.S.;Brun,C.;Yashina,L.V.;Bozhko,S.I.;(44)Zhang,Y.;Ye,J.;Matsuhashi,Y.;Iwasa,Y.AmbipolarMoS2etal.DoubleFe-ImpurityChargeStateintheTopologicalInsulatorThinFlakeTransistors.NanoLett.2012,12,1136−1140.Bi2Se3.Appl.Phys.Lett.2017,111,251601.(45)Hsiung,T.-C.;Mou,C.-Y.;Lee,T.-K.;Chen,Y.-Y.Surface-(27)Desvignes,L.;Stolyarov,V.S.;Aprili,M.;Massee,F.TunableDominatedTransportandEnhancedThermoelectricFigureofMeritHighSpeedAtomicRotorinBi2Se3RevealedbyCurrentNoise.ACSinTopologicalInsulatorBi1.5Sb0.5Te1.7Se1.3.Nanoscale2015,7,518−Nano2021,15,1421−1425.523.(28)Yano,R.;Koyanagi,M.;Kashiwaya,H.;Tsumura,K.;Hirose,(46)Bao,L.;He,L.;Meyer,N.;Kou,X.;Zhang,P.;Chen,Z.-g.;H.T.;Asano,Y.;Sasagawa,T.;Kashiwaya,S.UnusualSuper-Fedorov,A.V.;Zou,J.;Riedemann,T.M.;Lograsso,T.A.;etal.conductingProximityEffectinMagneticallyDopedTopologicalWeakAnti-LocalizationandQuantumOscillationsofSurfaceStatesinJosephsonJunctions.J.Phys.Soc.Jpn.2020,89,034702.TopologicalInsulatorBi2Se2Te.Sci.Rep.2012,2,726.(29)Yano,R.;Hirose,H.T.;Tsumura,K.;Yamamoto,S.;Koyanagi,(47)Jia,S.;Ji,H.;Climent-Pascual,E.;Fuccillo,M.;Charles,M.;M.;Kanou,M.;Kashiwaya,H.;Sasagawa,T.;Kashiwaya,S.Proximity-Xiong,J.;Ong,N.P.;Cava,R.J.Low-Carrier-ConcentrationCrystalsInducedSuperconductingStatesofMagneticallyDoped3DoftheTopologicalInsulatorBi2Te2Se.Phys.Rev.B2011,84,235206.4185https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(48)Hikami,S.;Larkin,A.I.;Nagaoka,Y.Spin-OrbitInteractionandMagnetoresistanceintheTwoDimensionalRandomSystem.Prog.Theor.Phys.1980,63,707−710.(49)Altshuler,B.L.;Aronov,A.;Khmelnitsky,D.EffectsofElectron-ElectronCollisionswithSmallEnergyTransfersonQuantumLocalisation.J.Phys.C:SolidStatePhys.1982,15,7367−7386.(50)Ashcroft,N.W.;Mermin,N.D.SolidStatePhysics;Harcourt,Inc.:Orlando,FL;1976;p240.(51)Xia,B.;Ren,P.;Sulaev,A.;Liu,P.;Shen,S.-Q.;Wang,L.IndicationsofSurface-DominatedTransportinSingleCrystallineNanoflakeDevicesofTopologicalInsulatorBi1.5Sb0.5Te1.8Se1.2.Phys.Rev.B2013,87,085442.(52)Shimizu,S.;Yoshimi,R.;Hatano,T.;Takahashi,K.S.;Tsukazaki,A.;Kawasaki,M.;Iwasa,Y.;Tokura,Y.GateControlofSurfaceTransportinMBE-GrownTopologicalInsulator(Bi1−xSbx)2Te3ThinFilms.Phys.Rev.B2012,86,045319.(53)Hsiung,T.-C.;Chen,D.-Y.;Zhao,L.;Lin,Y.-H.;Mou,C.-Y.;Lee,T.-K.;Wu,M.-K.;Chen,Y.-Y.EnhancedSurfaceMobilityandQuantumOscillationsinTopologicalInsulatorBi1.5Sb0.5Te1.7Se1.3Nanoflakes.Appl.Phys.Lett.2013,103,163111.4186https://doi.org/10.1021/acs.jpclett.1c00869J.Phys.Chem.Lett.2021,12,4180−4186

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭