《Hyunsoo Park, Ohmin Kwon, and Jihan Kim - Park, Kwon, Kim - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleComputationalIdentificationofConnectedMOF@COFMaterialsHyunsooPark,OhminKwon,andJihanKim*CiteThis:J.Phys.Chem.C2021,125,5897−5903ReadOnlineACCESSMetrics&MoreArticleRecommendationsABSTRACT:Covalent-organicframeworks(COFs)areregardedaspromisingcandidatesformanydifferentenergy/environmentalapplications,butthesematerialsaremoredifficulttosynthesizecomparedtootherporousmaterialssuchasmetal−organicframeworks(MOFs).Herein,wedevelopedacomputationalscreeningalgorithmthatusesMOFsassubstratesinordertotheoreticallyallowheteroepitaxialgrowthofthree-dimensionalCOFs(3DCOFs).ThealgorithmdetailstheinterfaceofMOF@COFattheatomic/molecularlevelinordertocreate3DCOFsusingabottom-upapproach.Consequently,19pairsofMOF@COFresultedfromthealgorithmareselectedascandidatesforheteroepitaxialgrowthof3DCOFsonthesurfaceofMOFs.■INTRODUCTION2DCOFs.Zhangandco-workersdemonstratedthatNH2-MIL-68@TPA-COFhybridmaterialcanbeusedasanCovalent-organicframeworks(COFs)aresynthesizedusing1−6effectivephotocatalystforthedegradationofRhodamineorganicbuildingunitslinkedbystrongcovalentbonds.30B.Kimandco-workersdevelopedametal-dopedNH2-MIL-BecauseCOFshavealargesurfacearea,enhancedchemical/7−11125(Ti)@LZU1hybridmaterialthatshowsexcellentphoto-thermalstability,andtunableporesize,theyhavebeencatalystperformanceforbothhydrogenationanddehydrogen-regardedaspromisingcandidatesforgasstorageand3112−1415−19ation.Lanandco-workersreportedthatNH2-UIO-66@separation,photocatalysts,andoptoelectronicdevi-20−22TAPA-1compositematerialcanbeusedasasuitableces.Unfortunately,unliketheirmorerenownedcounter-3223,24photocatalystforH2evolution.Hanandco-workerspartmaterialofmetal−organicframeworks(MOFs),demonstratedthatPCN-222-CO@TAPA-1showsthedeace-synthesisofCOFswithhighcrystallinitystillremainsatalization-Knoevenagelcondensationcascadereactionwithsignificantchallengegiventhatthestrongcovalentbondslead33highperformanceasabifunctionalcatalyst.Inaddition,topartialcrystallinitywiththepresenceofamorphous25variousMOF/COFcompositematerialssuchasNH2-MIL-networks.Three-dimensional(3D)COFsareespecially3435125(Ti)@CTF-1,IRMOF-3@LZU1,NH2-MIL-88B@TP-DownloadedviaUNIVOFCONNECTICUTonMay15,2021at21:01:29(UTC).difficulttosynthesizecomparedtotwo-dimensional(2D)3637TTA,NH2-UIO-66@LZU1,NH2-MIL-125@TAPB-COFsasthevanderWaalsinteractionsfromtheπ-orbital3839PDA,NH2-UIO-66@TP-PDA(orTP-TPE),andNH2-overlapfoundin2DCOFsprovideadditionaldrivingforceto40Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.26UIO-66@TFPT-DETHhavebeenreported.readilyformstackedlayers,whichismissingin3DCOFs.ToUnfortunately,despitemanyofthereportedsuccessfulfacilitatesynthesisof3DCOFs,manyresearchworkshaveaforementionedworks,wesurmisethattherearemanyfailedbeenreportedtoincreasethecrystallinityofCOFsusingexperimentalattemptsatsynthesizingMOF@COFmaterialsvarioussubstrates.Forexample,Dichtelandco-workersviaintegrating3DMOFsand3DCOFs.Itcanbeintuitedthatdemonstratedthat2DCOFspossessimprovedcrystallinitytoenhancethelikelihoodofsynthesizingcleanandcrystallinewhen2DCOFsaresynthesizedastheorientedthinfilmson27,283DMOF@3DCOFstructures,thecompositematerialwouldsingle-layergraphene(SLG).Additionally,Gaoandco-needtobedesignedfromabottom-upapproachwhereworkersutilizedaporousα-Al2O3substratetosynthesize3D29detailedanalysiswouldneedtobeconductedattheatomicCOF-320membranes.TheyshowedthatCOF-320possessesandmolecularleveltoselectthebestpairofcandidateahighdegreeofcrystallinitywhengrownonaporousα-Al2O3substrate.Nonetheless,theusageoftemplatestosynthesize3DCOFshavestillbeenchallengingbecausethechemicalReceived:December29,2020environmentoftheinterfacesbetweenthetwomaterialsofRevised:February24,2021compositesisunknown.Published:March5,2021Recently,MOFshavebeenusedtocreateMOF/COFcompositematerialswiththeinterfaceformedviaimineformationfromamine-functionalizedMOFsandimine-based©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c115515897J.Phys.Chem.C2021,125,5897−5903
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure1.(a)Clustermodelofamine-functionalizedBDCthatwasgeometricallyoptimizedbyGaussian09.ThecenterofmassofBDCismarkedasagreencircleandablackcircleindicatestheregionwherethenitrogenatomofthefunctionalgroupcanbelocated.(b)TwosnapshotsoftherotationalmotionofBDCinIRMOF-3.Fourpossiblepositionsoftheaminegroupinamine-functionalizedBDCaremarkedasnitrogenatoms.Blue,gray,red,andwhiteatomsrepresentnitrogen,carbon,oxygen,andhydrogen,respectively.materials.Previously,ourgroupdevisedarationalcomputa-experimentallysynthesized449COFs(other4002DCOFstionalalgorithmtoidentifyMOF@MOFstructuresandsixintheCoRECOFdatabasewereignoredasourfocuswasonnewMOF@MOFstructuresweresuccessfullysynthesized3DMOF@3DCOFmaterials).The3DCOFsintheCoRE41fromourtheoreticalpredictions.CriticaltothisalgorithmCOFdatabaseincludetheCOFswithhighcrystallinity(i.e.,wasaninsightthatthelinkerfromoneMOFcansuccessfully48COF-300,COF-303,LZU-79,andLZU-111).formcoordinationbondstothemetalnodeofthesecondLatticeMatching.LatticematchingisknownasakeyMOFandthattwoconstituentMOFsshouldpossesssimilarfactortoenhancethelikelihoodofheteroepitaxialgrowthforlatticeparameters.Additionally,variousheterostructures41,42,49−51thecompositematerials.ZurandMcgilldevelopedsuccessfullysynthesizedwithheteroepitaxialgrowthoftheanalgorithmthatcanpredictheteroepitaxialgrowthatthesecondaryMOFononeMOFseedhavebeenreported.42In52surfaceforcompositematerialsusingthelatticematching.Athecurrentwork,wedevelopedacomputationalscreeningkeyaspectofthelatticematchingalgorithmistomatchalgorithmthatcanrationallyidentifyMOF@COFmaterialstranslationalsymmetryinlatticesoftwocrystalmaterialsattheusingtheknowninteractionsbetweentheMOFsandtheinterfaces.Tothisend,thedistinct(100),(010),and(001)COFsattheatomicandmolecularlevel.WebelievethatthisMillerplaneswereusedfortheCOFsandthedistinctMillerbottom-upapproachcanbeusedtodesignnewMOF@COFplaneswithindices−1≤h,k,andl≤1wereusedforthematerialsthatcanfacilitatesynthesisofthisclassofcompositeMOFs.Tarziaandco-workers53usedthesamelatticematchingmaterials.algorithmforhigh-throughputscreeningofMOFsforheteroepitaxialalignmentonthesubstratesurfaces.The■METHODScriterionofthelatticematchingwasvalidatedascomparingFormationofCOFsentailsmanykindsofreactionssuchastheresultsofexperimentaldata,andsimilarcriteriawereusedboronatedanhydrideformation,nitrilecyclotrimerization,inthisworkaswell:(1)themaximumareaofsuperlatticeswas43borosilicateformation,andimineformation.Inthiswork,setlessthanninetimesthe(001)planeareaofCOFs,and(2)wedecidedtouseMOFsasatheoreticalsubstratetoformthelengthtoleranceforsuperlatticeparametermatchingwascompositeMOF@COFmaterialsandexploredvarioussettobelessthan10%,andtheangletolerancewassettobepossibilitiesinwhichCOFscouldbesynthesizedontopof2%.MOFsviasequentialreactions.Unfortunately,asfarasweChemicalBondingattheInterface.Chemicalbondingknow,itisdifficulttodirectly“connect”componentsof3Dattheinterfaceplaysacriticalroleonwhetherthetwo53−55COFstotheMOFsandassuch,weoptedtofirstfunctionalizecomponentmaterialsformacleansurfaceattheinterface.thelinkersoftheMOFstructurestoinducetheimine-basedToidentifychemicalbonding,chemicalconnectionpoints(i.e.,reactionbetweenthefunctionalgroupsoftheMOFsandtheatomsthatparticipateinbonding)ofMOFsandCOFsshouldimine-basedCOF.Asimilarreactionmechanismhasbeenbedefined.AttheinterfaceofMOF@COFmaterials,theexploredinthepasttosuccessfullysynthesizeMOF@2DCOFaminegroupinamine-functionalizedBDCofMOFsandthematerials.Inthiswork,wefocusedononlyinteractionswithaldehydeprecursorofCOFsarereactedbytheimineamine-functionalizedMOFsinspiteofthelackofthenumberformationreaction.Assuch,H2OmoleculesescapebyaofMOFsgiventhatthesearetheonesthataremostlikelytocondensationreactionandthenitrogenatomsoftheaminebesynthesizedinpractice.groupremain.Theremainingnitrogenatomsinamine-functionalizedBDCaredefinedasthechemicalconnection■SCREENINGALGORITHMpointsforMOFs.Likewise,thenitrogenatomsofimine-basedDatabaseConstructionforAmine-FunctionalizedCOFsaredefinedasthechemicalconnectionpointsforCOFs,MOFsandImine-BasedCOFs.Thelistofamine-function-anditisourhypothesisthatthesetwoconnectionpointsalizedMOFs44werefoundbyusingConquest,41whichisawouldneedtobewithinclosespatialvicinityofoneanotherprimaryprogramforsearchingandretrievinginformationfromacrossallthesupercellsoftheentirecrystaltoenhancethe45likelihoodofformingacleanandlargecrystallinecompositetheCambridgeStructuralDatabase(CSD).TheamineandnitrogroupwereselectedasthefunctionalgroupofMOFsformaterial.theimine-basedreaction.Atotalof537MOFshavingeitherWiththatsaid,identificationofthechemicalconnectionamine-functionalizedBDC(1,4-benzenedicarboxylicacid)orpointsoftheMOFsiscomplicatedduetothefactthattheirnitro-functionalizedBDCwerecollectedduetotheirfunctionalgroupscanrandomlyattachtoanyoneofthefour46prominence.FortheCOFs,493DCOFswerecollectedhydrogenatomsoftheBDClinker(seeFigure1afor47fromtheCoRECOFdatabase,whichconsistsofillustration).Also,therotationaldegreeoffreedomcannot5898https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure2.SchematicdiagramthatindicatestheoverallprocedureofscreeningforMOF@COFmaterials.Figure3.Screeningschemeforheteroepitaxialgrowthofthe3DCOFonMOFasthesubstratewhichconsistsofthreesteps:(1)latticematching,(2)identifyingconnectionpointsoftheMOFandCOF,and(3)unitcelltranslationoftheCOFwithMOFfixed.TworepresentativecandidatesofMOF@COFareIRMOF-3@DL-COF-1for(a)andUIO-66(Eu)@PI-COF-4for(b).TheconnectionpointsofCOFsaremarkedbygreenatomsandthoseofMOFsaremarkedbylargegraycircles.beignoredasshowninFigure1bwhichshowstwosnapshotsaccount,theBDCintheMOFsshouldbeconsideredtofreelywithdifferentorientationsoftheBDClinkers.Morrisandco-rotateinthesescreeningstudies.Assuch,itisassumedthattheworkersreportedthattheactivationenergyoftherotationofaminegroupscanalsofreelyrotateandstaywithinacircleofatheaminegroupis1.8±0.6kcalmol−1,andthefull180°specificradiusatthecenterofmassofBDC.Todeterminetherotationofthephenylenegroupinamine-functionalizedBDCspecificradiusvalue,aclustermodelofBDCwasgeometrically(i.e.,IRMOF-3)wasobtainedtobe5.0±0.2kcalmol−1byoptimizedusingtheGaussian0957packagewiththe6-31G+5658NMRrelaxationmeasurement.Althoughtheseactivation(d)basissetandB3LYPfunctional.ThecalculatedoptimalenergieswerecalculatedforjusttheIRMOF-3structure,itdistancebetweentheaminegroupandthecenterofmassofprovidesevidencethattherotationalmotionofBDChaslowBDCis2.817Å.Therefore,thechemicalconnectionpointsofactivationenergyinMOFs.WhentakingthesevaluesintoMOFsareintherangewitharadiusof2.817Åatthecenterof5899https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleFigure4.ComputationalmodelofIRMOF-3@DL-COF-1for(a)andUIO-66(Eu)@PI-COF-4for(b).ThetopredregionindicatestheCOFandthebottomblueregionindicatestheMOF.TheyareoptimizedusingtheForcitemoduleinMaterialsstudio.ThechemicalconnectionpointsofMOF@COFaremarkedaslargegreenatoms.Figure5.Screeningschemeforheteroepitaxialgrowthofthe3DCOFonMOFasthesubstratewithYUXQOY@PI-COF-4whichhaveamaximumASOis0.75.TheconnectionpointsofCOFsaremarkedbygreenatomsandthoseofMOFsaremarkedbylargegraycircles.massofBDC.ThesechemicalconnectionpointsaremarkedaswhereSmisthenumberofbindingatomsandScisthenumberblackcirclesinFigure1.ofconnectionpointsoftheCOFinaunitcell.WhenASOis1,ChemicalConnectionPointsMatching.TofindoptimalallconnectionpointsoftheCOFarewithintheradiusofthepairsofMOFsandCOFsthatcanconnectviathechemicalconnectionpointsoftheMOF.Incontrast,whenASOis0,connectionpoints,wesetthecriterionthatthenitrogenatomsnoneoftheconnectionpointsoftheCOFsareclosetotheofimine-basedCOFs(connectionpointsofCOFs)hadtobeMOF.Toexaminethelikelihoodofheteroepitaxialgrowthofwithin2.817ÅfromthecenterofmassofthebenzeneringoftheCOFsonthesubstrate,onlythepairsofMOF/COFwithBDC(connectionpointsofMOFs).ToexaminewhetheraASOlargerthan0.5wereselectedaspotentialcandidates.ThegivenMOF/COFpairsatisfiedthiscriterion,theunitcellofoverallscreeningprocedureissummarizedinFigure2.theMOFwasfixedwhiletheunitcelloftheCOFwastranslatedinunitsof0.5Åtoseeifanyofthesecombinations■RESULTSANDDISCUSSIONledtoasuccessfulmatch.ToquantifytheinterfacialbindingofOurscreeningalgorithmidentifiedatotalof19MOF@COFtheCOFsintherangebetween0and1,ASO(atomicsite49pairsashighpotentialcandidatesforsynthesis.Altogether,overlap)isdefinedasthereare9MOF@COFpairswithamaximumASOof1,meaningthatalliminenitrogenatomsoftheseCOFsareSmASO=within2.817ÅfromthecenterofmassofBDClinkersintheScMOFs.Figure3showsarepresentativeillustrationexampleof5900https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(a)IRMOF-3@DL-COF-1and(b)UIO-66(Eu)@PI-COF-4.Table1.NineteenPairsofMOF@COFinwhichtheAsshowninFigure3a,IRMOF-3isacubicstructurewithaMaximumASOIsLargerthan0.5latticeparameterof(25.75×25.75×25.75Å)whileDL-MOF@COF-1-borisalsoacubicstructurewithalatticeparameterofMOFCOFCOF(26.56×26.56×26.56Å).Bycleavingboththematerialsrefcode(Millercommonname(Milleralongthe(100)Millerplane,themismatchratioofthelatticeplane)commonnameplane)ASOisonly3.1%.AfterpassingthroughthelatticematchingEDUSUR(001)IRMOF-3(Zn)DL-COF-1(100)1.0criterion,theunitcelloftheCOFwassubsequentlytranslatedDQAMUG3D-CuPor-COF(100)1.0alongthefixedMOFunitcelltofindtheoptimalconfiguration(010)thatminimizesthedistancesbetweenthesechemicalDQAMUGPI-COF-4(001)1.0connectionpoints.Finally,allconnectionpointsoftheDL-(010)COF-1-borarewithinthoseofIRMOF-3asshowninthefinalEZIPEK(100)NH2-UIO-66PI-COF-4(001)1.0(Eu)stepofFigure3a.UsingthisMOF@COFstructure,aEZIPEK(100)NH2-UIO-663D-CuPor-COF(100)1.0computationalmodelwasgeneratedandgeometrically(Eu)59optimizedusingtheForcitemoduleinMaterialsStudioKOKKOL(110)NH2-MIL-88bDL-COF-1(100)1.0(Figure4a).(Fe)ThesecondrepresentativeMOF@COFpair(i.e.,UIO-KOKKOL(110)NH2-MIL-88bPI-COF-4(001)1.066(Eu)@PI-COF-4)isshowninFigure3b.UIO-66(Eu)isa(Fe)cubicstructurewithalatticeparameterof(21.71×21.71×XIVNEW(100)PI-COF-4(001)1.021.71Å)whilePI-COF-4isatetragonalstructurewithalatticeYUXQOY(101)DL-COF-1(100)1.0DIYKED(110)DL-COF-1(100)0.667parameterof(20.49×20.49×32.20Å).BycleavingboththeDIYKED(010)PI-COF-4(001)0.75materialsalongthe(001)Millerplane,themismatchratioisEDUSUR(100)IRMOF-3(Zn)3D-CuPor-COF(100)0.6885.6%.Figure3bshowstheoptimalminimumdistanceoftheEWILON(100)NH2-UIO-66PI-COF-4(001)0.5chemicalconnectionpointsoftheMOFandtheCOFusing(Zr)translationalmotionoftheunitcelloftheCOF.AllchemicalEWILON(100)NH2-UIO-663D-CuPor-COF(100)0.688connectionpointsoftheCOFarematchedwiththeMOFas(Zr)thesubstrate.ThecomputationalmodelisalsogeneratedinRUPNEW(100)CAU-1(Al)DL-COF-1(100)0.5Figure4binthesameway.WOBHOMNH2-MIL-88b3D-CuPor-COF(100)0.75Furthermore,thereare10MOF@COFpairswitha(101)(Zn)maximumASObetween0.5and1.Figure5showsaWOBHOMNH2-MIL-88bPI-COF-4(001)0.5(101)(Zn)representativeexampleofYUXQOY@PI-COF.YUXQOYisYUXQOY(101)3D-CuPor-COF(100)0.625anorthorhombicstructurewhichconsistsoftheamine-YUXQOY(100)PI-COF-4(001)0.7560functionalizedBDClinkerand4,4′-bipy.Thelatticeparameteris(11.72×13.70×21.05Å).Thesuperlattice(21.05×40.10Å)oftheMOFcleavedbythe(100)Millerplanearematchedwiththesuperlattice(20.49×40.98Å)of■theCOFcleavedbythe(001)Millerplane.ThelengthAUTHORINFORMATIONmismatchratioofthelatticeis2.20%.However,thesetwoCorrespondingAuthormaterialsonlyhaveamaximumASOof0.75whentranslatingJihanKim−DepartmentofChemicalandBiomoleculartheunitcelloftheCOFasshowninFigure5.YoucanseethatEngineering,KoreaAdvancedInstituteofScienceandoneoutoffourgreenchemicalconnectionpointsareoutsideTechnology(KAIST),Daejeon34141,RepublicofKorea;thecircularregionoftheMOFconnectionpoints.Assuch,orcid.org/0000-0002-3844-8789;Email:jihankim@theremightbeaneedformorestrainforallofthesepointstokaist.ac.krmatchwithoneanother.Informationregardingall19MOF@AuthorsCOFcandidatesaresummarizedinTable1.HyunsooPark−DepartmentofChemicalandBiomolecularEngineering,KoreaAdvancedInstituteofScienceand■CONCLUSIONSTechnology(KAIST),Daejeon34141,RepublicofKorea;Wehavedevelopedanovelalgorithmthatpredicthetero-orcid.org/0000-0001-9388-173Xepitaxialgrowthof3Dimine-basedCOFsonthesurfacesofOhminKwon−DepartmentofChemicalandBiomolecularamine-functionalizedMOFsandidentified19pairsofMOF@Engineering,KoreaAdvancedInstituteofScienceandCOFwhichcanbeexperimentallysynthesizedbyusingtheTechnology(KAIST),Daejeon34141,RepublicofKorea;MOFsassubstratesandinducingheteroepitaxialgrowthfororcid.org/0000-0002-1090-0737thecorrespondingCOFcandidates.WebelievethatthisCompletecontactinformationisavailableat:bottom-updesigncanovercomesomeofthechallengesforhttps://pubs.acs.org/10.1021/acs.jpcc.0c11551synthesizingof3DCOFsandmightfacilitategrowinglargecrystalswiththeaidofthesubstrateMOFs.Also,asaNotescomputationalgroup,althoughwedonothavethecapacitytoTheauthorsdeclarenocompetingfinancialinterest.synthesizethesematerialsourselves,futurecollaborationwithexperimentalgroupswouldbefruitfulinleadingtosuccessful■ACKNOWLEDGMENTSsynthesisofthesematerials.Itisouropinion,giventhelowThisworkwassupportedbySamsungResearchFunding&crystallinityfoundinmostCOFs,choosingCOFswithhighIncubationCenterofSamsungElectronicsunderProjectcrystallinitywouldfacilitatethesynthesisprocess.NumberSRFC-MA1702-07.5901https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle■(23)Eddaoudi,M.;Moler,D.B.;Li,H.;Chen,B.;Reineke,T.M.;REFERENCESO’keeffe,M.;Yaghi,O.M.Modularchemistry:secondarybuilding(1)Cote,A.P.;Benin,A.I.;Ockwig,N.W.;O’Keeffe,M.;Matzger,unitsasabasisforthedesignofhighlyporousandrobustmetal−A.J.;Yaghi,O.M.Porous,crystalline,covalentorganicframeworks.organiccarboxylateframeworks.Acc.Chem.Res.2001,34,319−330.Science2005,310,1166−1170.(24)James,S.L.Metal-organicframeworks.Chem.Soc.Rev.2003,(2)El-Kaderi,H.M.;Hunt,J.R.;Mendoza-Cortés,J.L.;Côté,A.P.;32,276−288.Taylor,R.E.;O’Keeffe,M.;Yaghi,O.M.Designedsynthesisof3D(25)Diercks,C.S.;Yaghi,O.M.Theatom,themolecule,andthecovalentorganicframeworks.Science2007,316,268−272.covalentorganicframework.Science2017,355,No.eaal1585.(3)Hunt,J.R.;Doonan,C.J.;LeVangie,J.D.;Côté,A.P.;Yaghi,O.(26)Ma,X.;Scott,T.F.ApproachesandchallengesinthesynthesisM.Reticularsynthesisofcovalentorganicborosilicateframeworks.J.ofthree-dimensionalcovalent-organicframeworks.CommunicationsAm.Chem.Soc.2008,130,11872−11873.Chemistry2018,1,1−15.(4)Tilford,R.W.;Gemmill,W.R.;zurLoye,H.-C.;Lavigne,J.J.(27)Colson,J.W.;Woll,A.R.;Mukherjee,A.;Levendorf,M.P.;Facilesynthesisofahighlycrystalline,covalentlylinkedporousSpitler,E.L.;Shields,V.B.;Spencer,M.G.;Park,J.;Dichtel,W.R.boronatenetwork.Chem.Mater.2006,18,5296−5301.Oriented2Dcovalentorganicframeworkthinfilmsonsingle-layer(5)Tilford,R.W.;Mugavero,S.J.,III;Pellechia,P.J.;Lavigne,J.J.graphene.Science2011,332,228−231.Tailoringmicroporosityincovalentorganicframeworks.Adv.Mater.(28)Colson,J.W.;Mann,J.A.;DeBlase,C.R.;Dichtel,W.R.2008,20,2741−2746.Patternedgrowthoforiented2Dcovalentorganicframeworkthin(6)Yaghi,O.M.;O’Keeffe,M.;Ockwig,N.W.;Chae,H.K.;filmsonsingle-layergraphene.J.Polym.Sci.,PartA:Polym.Chem.Eddaoudi,M.;Kim,J.Reticularsynthesisandthedesignofnew2015,53,378−384.materials.Nature2003,423,705−714.(29)Lu,H.;Wang,C.;Chen,J.;Ge,R.;Leng,W.;Dong,B.;Huang,(7)Mastalerz,M.TheNextGenerationofShape-PersistantZeoliteJ.;Gao,Y.Anovel3DcovalentorganicframeworkmembranegrownAnalogues:CovalentOrganicFrameworks.Angew.Chem.Int.Ed.onaporousα-Al2O3substrateundersolvothermalconditions.2008,47,445−447.Chem.Commun.2015,51,15562−15565.(8)Makhseed,S.;Samuel,J.Hydrogenadsorptioninmicroporous(30)Peng,Y.;Zhao,M.;Chen,B.;Zhang,Z.;Huang,Y.;Dai,F.;organicframeworkpolymer.Chem.Commun.2008,4342−4344.Lai,Z.;Cui,X.;Tan,C.;Zhang,H.HybridizationofMOFsand(9)Uribe-Romo,F.J.;Hunt,J.R.;Furukawa,H.;Klock,C.;COFs:anewstrategyforconstructionofMOF@COFcore−shellO’Keeffe,M.;Yaghi,O.M.Acrystallineimine-linked3-Dporoushybridmaterials.Adv.Mater.2018,30,No.1705454.covalentorganicframework.J.Am.Chem.Soc.2009,131,4570−4571.(31)Sun,D.;Jang,S.;Yim,S.J.;Ye,L.;Kim,D.P.MetalDoped(10)Dogru,M.;Sonnauer,A.;Gavryushin,A.;Knochel,P.;Bein,T.Core−ShellMetal-OrganicFrameworks@CovalentOrganicFrame-Acovalentorganicframeworkwith4nmopenpores.Chem.Commun.works(MOFs@COFs)HybridsasaNovelPhotocatalyticPlatform.2011,47,1707−1709.Adv.Funct.Mater.2018,28,No.1707110.(11)Kuhn,P.;Antonietti,M.;Thomas,A.Porous,covalenttriazine-(32)Zhang,F.M.;Sheng,J.L.;Yang,Z.D.;Sun,X.J.;Tang,H.L.;basedframeworkspreparedbyionothermalsynthesis.Angew.Chem.Int.Ed.2008,47,3450−3453.Lu,M.;Dong,H.;Shen,F.C.;Liu,J.;Lan,Y.Q.Rationaldesignof(12)Furukawa,H.;Yaghi,O.M.Storageofhydrogen,methane,andMOF/COFhybridmaterialsforphotocatalyticH2evolutioninthecarbondioxideinhighlyporouscovalentorganicframeworksforcleanpresenceofsacrificialelectrondonors.Angew.Chem.Int.Ed.2018,57,energyapplications.J.Am.Chem.Soc.2009,131,8875−8883.12106−12110.(13)Assfour,B.;Seifert,G.Adsorptionofhydrogenincovalent(33)Gao,M.-L.;Qi,M.-H.;Liu,L.;Han,Z.-B.Anexceptionallyorganicframeworks:comparisonofsimulationsandexperiments.stablecore−shellMOF/COFbifunctionalcatalystforahighlyMicroporousMesoporousMater.2010,133,59−65.efficientcascadedeacetalization−Knoevenagelcondensationreaction.(14)Doonan,C.J.;Tranchemontagne,D.J.;Glover,T.G.;Hunt,J.Chem.Commun.2019,55,6377−6380.R.;Yaghi,O.M.Exceptionalammoniauptakebyacovalentorganic(34)Li,F.;Wang,D.;Xing,Q.-J.;Zhou,G.;Liu,S.-S.;Li,Y.;Zheng,framework.Nat.Chem.2010,2,235−238.L.-L.;Ye,P.;Zou,J.-P.DesignandsynthesesofMOF/COFhybrid(15)Nagai,A.;Chen,X.;Feng,X.;Ding,X.;Guo,Z.;Jiang,D.Amaterialsviapostsyntheticcovalentmodification:AnefficientstrategySquaraine-LinkedMesoporousCovalentOrganicFramework.Am.toboostthevisible-light-drivenphotocatalyticperformance.Appl.Ethnol.2013,52,3770−3774.Catal.,B2019,243,621−628.(16)Stegbauer,L.;Schwinghammer,K.;Lotsch,B.V.Ahydrazone-(35)Zhao,J.;Jin,B.;Peng,R.NewCore-ShellHybridMaterialIR-basedcovalentorganicframeworkforphotocatalytichydrogenMOF3@COF-LZU1forhighlyefficient-visible-lightphotocatalyst-production.Chem.Sci.2014,5,2789−2793.degradingnitro-aromaticexplosives.Langmuir2020,36,5665−5670.(17)Jiang,X.;Wang,P.;Zhao,J.2Dcovalenttriazineframework:a(36)Ren,J.;Zhang,L.;Liu,Z.;Deng,Q.;Sang,Y.;Dong,K.;Qu,X.newclassoforganicphotocatalystforwatersplitting.J.Mater.Chem.Nature-InspiredConstructionofMOF@COFNanozymewithActiveA2015,3,7750−7758.SitesinTailoredMicroenvironmentandPseudopodia-likeSurfacefor(18)Wang,P.;Jiang,X.;Zhao,J.Bottom-updesignof2DorganicEnhancedBacterialInhibition.Angew.Chem.Int.Ed.2021,60,3469−photocatalystsforvisible-lightdrivenhydrogenevolution.J.Phys.:3474.Condens.Matter2016,28,No.034004.(37)Peng,H.;Raya,J.;Richard,F.;Baaziz,W.;Ersen,O.;Ciesielski,(19)Liu,W.;Su,Q.;Ju,P.;Guo,B.;Zhou,H.;Li,G.;Wu,Q.AA.;Samorì,P.SynthesisofRobustMOFs@COFsPorousHybridHydrazone-BasedCovalentOrganicFrameworkasanEfficientandMaterialsviaanAza-Diels−AlderReaction:TowardsHigh-Perform-ReusablePhotocatalystfortheCross-DehydrogenativeCouplinganceSupercapacitorMaterials.Angew.Chem.Int.Ed2020,59,ReactionofN-Aryltetrahydroisoquinolines.ChemSusChem2017,10,19602−19609.664−669.(38)Lu,G.;Huang,X.;Li,Y.;Zhao,G.;Pang,G.;Wang,G.(20)Wan,S.;Guo,J.;Kim,J.;Ihee,H.;Jiang,D.Abelt-shaped,blueCovalentlyintegratedcore-shellMOF@COFhybridsasefficientluminescent,andsemiconductingcovalentorganicframework.Angew.visible-light-drivenphotocatalystsforselectiveoxidationofalcohols.J.Chem.Int.Ed.2008,47,8826−8830.EnergyChem.2020,43,8−15.(21)Meng,Z.;Stolz,R.M.;Mirica,K.A.Two-dimensional(39)Wang,X.-Y.;Yin,H.-Q.;Yin,X.-B.MOF@COFswithStrongchemiresistivecovalentorganicframeworkwithhighintrinsicMultiemissionforDifferentiationandRatiometricFluorescenceconductivity.J.Am.Chem.Soc.2019,141,11929−11937.Detection.ACSAppl.Mater.Interfaces2020,12,20973−20981.(22)Wang,L.;Zeng,C.;Xu,H.;Yin,P.;Chen,D.;Deng,J.;Li,M.;(40)Chen,Y.;Yang,D.;Shi,B.;Dai,W.;Ren,H.;An,K.;Zhou,Z.;Zheng,N.;Gu,C.;Ma,Y.Ahighlysoluble,crystallinecovalentZhao,Z.;Wang,W.;Jiang,Z.Insituconstructionofhydrazone-linkedorganicframeworkcompatiblewithdeviceimplementation.Chem.Sci.COF-basedcore−shellhetero-frameworksforenhancedphoto-2019,10,1023−1028.catalytichydrogenevolution.J.Mater.Chem.A2020,8,7724−7732.5902https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
6TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(41)Kwon,O.;Kim,J.Y.;Park,S.;Lee,J.H.;Ha,J.;Park,H.;Moon,H.R.;Kim,J.Computer-aideddiscoveryofconnectedmetal-organicframeworks.Nat.Commun.2019,10,1−8.(42)Zhao,M.;Chen,J.;Chen,B.;Zhang,X.;Shi,Z.;Liu,Z.;Ma,Q.;Peng,Y.;Tan,C.;Wu,X.-J.Selectiveepitaxialgrowthoforientedhierarchicalmetal−organicframeworkheterostructures.J.Am.Chem.Soc.2020,142,8953−8961.(43)Ding,S.-Y.;Wang,W.Covalentorganicframeworks(COFs):fromdesigntoapplications.Chem.Soc.Rev.2013,42,548−568.(44)Lin,Y.;Kong,C.;Chen,L.Amine-functionalizedmetal−organicframeworks:structure,synthesisandapplications.RSCAdv.2016,6,32598−32614.(45)Groom,C.R.;Bruno,I.J.;Lightfoot,M.P.;Ward,S.C.TheCambridgestructuraldatabase.ActaCrystallograp.SectionB:Struct.Sci.,Crys.Engineer.andMater.2016,72,171−179.(46)Bernt,S.;Guillerm,V.;Serre,C.;Stock,N.Directcovalentpost-syntheticchemicalmodificationofCr-MIL-101usingnitratingacid.Chem.Commun.2011,47,2838−2840.(47)Tong,M.;Lan,Y.;Yang,Q.;Zhong,C.Exploringthestructure-propertyrelationshipsofcovalentorganicframeworksfornoblegasseparations.Chem.Eng.Sci.2017,168,456−464.(48)Ma,T.;Kapustin,E.A.;Yin,S.X.;Liang,L.;Zhou,Z.;Niu,J.;Li,L.-H.;Wang,Y.;Su,J.;Li,J.Single-crystalx-raydiffractionstructuresofcovalentorganicframeworks.Science2018,361,48−52.(49)Mahan,J.E.;Geib,K.M.;Robinson,G.;Long,R.G.;Xinghua,Y.;Bai,G.;Nicolet,M.A.;Nathan,M.EpitaxialfilmsofsemiconductingFeSi2on(001)silicon.Appl.Phys.Lett.1990,56,2126−2128.(50)Lin,W.T.;Meng,L.C.;Chen,G.J.;Liu,H.S.EpitaxialgrowthofcubicAlNfilmson(100)and(111)siliconbypulsedlaserablation.Appl.Phys.Lett.1995,66,2066−2068.(51)Kwon,O.;Park,S.;Zhou,H.-C.;Kim,J.Computationalpredictionofhetero-interpenetrationinmetal−organicframeworks.Chem.Commun.2017,53,1953−1956.(52)Zur,A.;McGill,T.Latticematch:Anapplicationtoheteroepitaxy.J.Appl.Phys.1984,55,378−386.(53)Tarzia,A.;Takahashi,M.;Falcaro,P.;Thornton,A.W.;Doonan,C.J.;Huang,D.M.High-throughputscreeningofmetal−organicframeworksformacroscaleheteroepitaxialalignment.ACSAppl.Mater.Interfaces2018,10,40938−40950.(54)Bristow,J.K.;Butler,K.T.;Svane,K.L.;Gale,J.D.;Walsh,A.Chemicalbondingatthemetal−organicframework/metaloxideinterface:simulatedepitaxialgrowthofMOF-5onrutileTiO2.J.Mater.Chem.A2017,5,6226−6232.(55)Butler,K.T.;Hendon,C.H.;Walsh,A.Designingporouselectronicthin-filmdevices:bandoffsetsandheteroepitaxy.FaradayDiscuss.2017,201,207−219.(56)Morris,W.;Taylor,R.;Dybowski,C.;Yaghi,O.M.;Garcia-Garibay,M.A.Frameworkmobilityinthemetal−organicframeworkcrystalIRMOF-3:Evidenceforaromaticringandaminerotation.J.Mol.Struct.2011,1004,94−101.(57)Frisch,M.;Trucks,G.;Schlegel,H.;Scuseria,G.;Robb,M.;Cheeseman,J.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.Gaussian09,RevisionD.01(GaussianInc.,2013).ADBecke.Density-functionalthermochemistry.III.Theroleofexactexchange.J.Chem.Phys1993,98,5648.(58)Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.Abinitiocalculationofvibrationalabsorptionandcirculardichroismspectrausingdensityfunctionalforcefields.J.Phys.Chem.1994,98,11623−11627.(59)Module,F.MaterialStudio6.0,AccelrysInc.:SanDiego,CA,2011.(60)Jiang,H.-L.;Tatsu,Y.;Lu,Z.-H.;Xu,Q.Non-,micro-,andmesoporousmetal−organicframeworkisomers:reversibletrans-formation,fluorescencesensing,andlargemoleculeseparation.J.Am.Chem.Soc.2010,132,5586−5587.5903https://dx.doi.org/10.1021/acs.jpcc.0c11551J.Phys.Chem.C2021,125,5897−5903
此文档下载收益归作者所有