《Insight into Chemical Reduction and Charge Storage Mechanism of 2,2 ′ -Dipyridyl Disul fi de toward Stable Lithium − Organic Battery -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterInsightintoChemicalReductionandChargeStorageMechanismof2,2′-DipyridylDisulfidetowardStableLithium−OrganicBatteryQianqianFan,YubingSi,*WeiGuo,andYongzhuFu*CiteThis:J.Phys.Chem.Lett.2021,12,900−906ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Inlithium−organicbatteries,organiccathodematerialscoulddissolveinaliquidelectrolyteanddiffusethroughtheporousseparatortotheactivelithium-metalanode,resultingincyclinginstability.However,2,2′-dipyridyldisulfide(PyDS)canbecycled5timesbetterthandiphenyldisulfide(PDS)althoughbotharesoluble.Webelievethisisrelatedtotheirreactivitywithlithium(Li0).Herein,weinvestigatethechemicalreductionofPyDSbylithiatedcarbonpaper(Li-CP)inetherelectrolyte.Itisfoundthatonly6.3%ofPyDSwasreducedbyLi-CPafter10days,unlikePDS.ExperimentalandcomputationalresultsshowthatPyDSmoleculesareionizedbylithiumionsoflithiumsaltsdelocalizingthechargeonpyridineringsofPyDS,whichcanmomentarilystoreLi0,thuskeepingtheS−SbondinertinchemicalreactionwithLi0.Thisfindingissuccessfullyutilizedinamembrane-freeredoxflowbatterywithPyDScatholyte,showinglongcyclelifewithhighenergydensityandenergyefficiency.Thisworkrevealstheinterestingchargestoragemechanismandthedifferentactivityoforganodisulfidestowardelectrochemicalreductionandchemicalreductionduetotheorganicgroups,whichcanprovideguidanceforthedesignofstablelithium−organicbatteries.lectrochemicalenergystorage(EES)isvitalforportablecleavageofS−Sbonds.However,PyDScanbecycled5timesE1electronics,electricvehicles,andgridenergystorage.betterthanPDS,althoughbotharesolubleintheelectrolyteRechargeablebatteries,suchaslithium-ion(Li-ion)batteries,(Figure1A),i.e.,500cycleswith69%capacityretentionversusplayanimportantroleinEESbecauseoftheirhighenergy15100cycleswith54%capacityretention.Figure1Bshowsthe2,3densities.TofurtherincreasetheenergyLi-ionbatteriescanconceptualillustrationsofPyDSinthechemicalreductionandstore,electrodematerialsbasedonconversionreactionselectrochemicalreduction.ItsoutstandingcyclingperformanceinvolvingstorageofmultiplelithiumionsandelectronsarecouldberelatedtotheinertreactivityofPyDSwhenintouch4,5activelypursued.Forexample,organicelectrodematerialswiththelithiummetalanode.Apparently,PDSlackssucharepromisingbecauseoftheirhighcapacitiesanddiversecapabilityshowingfastcapacitydecay.Thedifferencebetween6−8structures.Amongthem,organosulfideshavebecomeapyridylandphenylgroupisthecriticalreasonbehindtheDownloadedviaUNIVOFCALIFORNIASANTABARBARAonMay16,2021at09:09:58(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.classofemergingelectrodematerialswithpreciselithiationphenomenon,whichisworthrevealing.9sitesofferinghighcapacitiesandenergydensities.InrecentInthiswork,weinvestigatedthechemicalreductionyears,avarietyoforganosulfideshavebeenstudiedandtheirreactivityofPyDSandPDS.ItisfoundthatPyDSdoesnot10−14intriguingredoxreactionmechanismshavebeenrevealed.showincreasedpotentialvsLi/Li+whenincontactwithTheorganicgroupsattachedtothesulfurchainshavelithiatedgraphiteinetherelectrolytewhenthelithiumsaltprofoundeffectsontheirelectrochemicalbehaviorandcycling(LiTFSI)concentrationreaches0.5M,unlikePDS,which15,16performance.However,theirsolubilityinaliquidelectro-provesourhypothesis.Thefollowingexperimentalandlytecouldresultindiffusiontothehighlyactivemetalanode,computationalresultsrevealthatPyDSmoleculesareionizedthereforecyclinginstability,whichisanunsolvedissue10,11bylithiumionsdelocalizingthechargeonpyridineringsofpreventingthemfromwideapplication.Topreventtheirinternaltransport,amembraneorsolid-stateelectrolyteistypicallyneeded,particularlyinredoxflowbatteries.17−22Received:November24,2020Ourpriorworkreportedthat2,2′-dipyridyldisulfide(PyDS)Accepted:January6,2021anddiphenyldisulfide(PDS)havesignificantdifferenceinPublished:January13,2021termsofcyclingstabilityalthoughtheyhavesimilarmolecularstructures.Bothcanundergoelectrochemicalreductionreactionsupondischargeinlithiumbatteries,leadingto©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.0c03496900J.Phys.Chem.Lett.2021,12,900−906
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.PyDSvsPDSinlithiumbatteriesandthehypothesis.(A)AsimplifiedillustrationofthecyclingperformanceofPyDSandPDSinrechargeablelithiumbatteries.(B)ConceptualillustrationsofPyDSinthechemicalreduction(Li-CR:left)inthisworkandelectrochemicalreduction(ECR:right)inpriorwork.PyDS,whichcanmomentarilystoreatomiclithium(Li0)asanWealsomonitoredtheopen-circuitvoltage(OCV)oftheorganiclithiumstoragematerial,thuskeepingtheS−SbondtwocellstodeterminewhethertheLi0extractedfromtheLi-inertinchemicalreductionreaction.ThisfindingisCPcanchemicallyreducePyDSorPDS.Ifthechemicalsuccessfullyappliedinamembrane-freelithium-redoxflowreductionreactionsoccur,lithiumthiopyridyl(PySLi)andbattery.TheLi|PyDSflowbatteryshowslongcyclingthiophenolate(PhSLi)areformedleadingtoincreaseofOCV.performancewithhighenergydensity(144.7WhL−1)andAsshowninFigure2B,theLi|Li-CP-PDScellhasaninitialenergyefficiency(>82%).ThisworkrevealsthedifferentOCVof∼0.62V,whichismuchhigherthanthepotentialactivityoforganodisulfidestowardelectrochemicalreduction(<50mV)ofLi-CPvsLi/Li+(FigureS2),indicatingthataandchemicalreductionduetothedifferentorganicgroups,rapidchemicalreactionhasoccurredbetweenLi-CPandPDSwhichcanprovideguidanceforthedevelopmentofstablewhenthecellwasassembled.ThentheOCVofLi|Li-CP-PDSlithiumorganicbatteries.cellincreasedlinearlyto2.16Vafter2daysandstabilizedatToinvestigatethechemicalreductionofPyDSinliquid2.19V.Incontrast,theOCVoftheLi|Li-CP-PyDScellelectrolyte,weusedlithiatedcarbonpaper(Li-CP)asitcanincreasedslightlyandstabilizedat∼0.18Vafter10days,serveasalithiumdonortochemicallyreducepolysulfidesinalthoughtheXRDanalysisconfirmsthattheLi0wasextractedliquidelectrolyteinourpreviousstudy.23Inaddition,Toray0fromtheLi-CP.ThisresultimpliesmostoftheextractedLiincarbonpaperasthelithiumintercalationhosthasabundanttheLi|Li-CP-PyDScellstillexistsinthezerovalentstateandlargevoids,whicharehelpfulforholdingPyDSandPDSmaynotreactwithPyDS.catholytes,asshowninFigureS1A.ThelithiationprocesswasUltrahigh-performanceliquidchromatographyequippedcarriedoutinalithiumhalfcellwithcarbonateelectrolyte,andwithquadrupoletime-of-flightmassspectrometry(UPLC-thecorrespondingvoltageprofileisshowninFigureS1B.TheQTof-MS)wasusedtodirectlyidentifywhetherPyDSwasas-preparedLi-CPwasusedasthecurrentcollectoronthechemicallyreducedornot.FortheLi-CP-PyDSelectrode,thecathodetofabricatelithiumhalfcellswithPyDSorPDSUVabsorptionspectrumshowstwomainpeaksatretention(denotedasLi|Li-CP-PyDSorLi|Li-CP-PDS)inethertimesof2.39and4.86min(Figure2C),correspondingtotheelectrolyteascatholyte.Afteraprolongedstabilizingtimem/zof112.021(2-pyridinethiol,i.e.,protonatedformofthe(10days),theLi-CPwasextractedfromthecellsandreducedproductofPyDS)and221.020(positivelyionizedcharacterized.Figure2AshowstheXRDpatternsofpristinePyDS),respectively(FigureS3).ItcanbedeterminedthatCP,Li-CP,Li-CP-PyDS,andLi-CP-PDS.Thestrongpeakatonly6.3%ofPyDSwasconvertedtoPySLibasedontheUV∼26.4°isassignedtothe(002)planepeakofgraphiteinpeakarea(TableS1).Additionally,Ramanspectrademon-pristineCP.Afterlithiation,thepeakshiftstoloweranglestratetheS−Sbond(545cm−1)ofPyDS24remainsunbroken(∼24.1°)indicatingintercalationoflithiumionsintotheCP.(FigureS4),furtherprovingtheinactivityofPyDSinchemicalThe(002)planepeaksofLi-CP-PDSandLi-CP-PyDSbothreductionreactionbyLi0.Incontrast,58.7%ofPDSwasshifttohigheranglesof∼25.7°and∼25.4°,respectively,convertedtoPhSLiduringthesameprocessbasedonthemeaningtheextractionofLi0fromLi-CPanddecreaseoftheUPLCanalysis(FigureS5andTableS1).Moreover,theself-interplanarspacingd002.dischargetestofLi|PyDSandLi|PDScellsfurtherrevealsthe901https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure2.ExperimentalanalysisofchemicalreductionofPyDSandPDSbyLi0.(A)XRDpatternsofpristineCP,Li-CP,Li-CP-PDS,andLi-CP-PyDSafteraprolongedstabilizingtime(10days)inether-basedelectrolyte(1MLiTFSIwith0.15MLiNO3inDOL/DME),withthezoomed-inXRDpatternshowingtheregionof(002)diffractionat2θ=21°−31°.(B)OCVoftheLi|Li-CP-PyDSandLi|Li-CP-PDScellsasafunctionofstabilizingtime.(C)ThecorrespondingUPLC-QTof-MSUVabsorptionspectrumoftheLi-CP-PyDSsampleafteraprolongedstabilizingtime.(D)Self-dischargeoftheLi|PyDSandLi|PDScells.TheanodeisLi-CP.(E)7LiNMRspectraofLiTFSI+PyDSandLiTFSI.difference,asshowninFigure2D.WhentheLi-CPisusedasLi-CP-PyDSandLi|Li-CP-PDScellsbothincreaselinearlytoanode,theOCVoftheLi-CP|PDScelldecreasesrapidlyfromover2.0V.TheUPLC-QTof-MSanalysisconfirmsthat61.7%2.40to1.13Vafteronly1h,andthentheOCVbecomesofPyDSisreducedbyLi-CPandconvertedtoPySLi(Figurevirtuallyzeroafter16days.Bycontrast,theOCVoftheLi-CP|S8andTableS2).TheaboveresultsconfirmthatLiTFSIcanPyDScellremainsstableafter20days,againshowingthehighstabilizePyDSagainstchemicalreductionreactionbyLi0.ThestabilityofPyDSagainstchemicalreductionreactionbyLi-CP.LiTFSIconcentrationalsoplaysanimportantrole.PyDSwasWhenlithiummetalisusedasanode,theresultremainsthedissolvedintheelectrolytewithdifferentconcentrationsofsame(FigureS6).LiTFSIand0.15MLiNO3,theOCVincreasingrateoftheLi|Torevealtheeffectoflithiumsalt(i.e.,LiTFSI)inthisLi-CP-PyDScellsdecreaseswiththeincreaseofLiTFSI.Whenphenomenon,wefirstusedtheDOL/DMEsolventwithouttheLiTFSIconcentrationreaches0.5M,theOCVofthecellanyLiTFSIintheLi|Li-CP-PyDSandLi|Li-CP-PDScells.doesnotincreaseandstaysat∼0.20V,asshowninFigureS9.After10days,the(002)planepeaksofLi-CP-PyDSandLi-IntheabsenceofLiNO3,theconcentrationthresholdofCP-PDSshifttohigheranglesof∼25.7°and∼25.8°,LiTFSIforthechemicalreactionofPyDStooccuris2Mrespectively,andtheOCVoftheformercellrisesevenfaster(FigureS10A).WithoutLiTFSI,theconcentrationthresholdthanthatofthelatershowninFigureS7.TheOCVsoftheLi|ofLiNO3is0.5M(FigureS10B).Theseresultsshowthatboth902https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure3.SimulationofPyDS-LiTFSIcomplexandLi0storageinPyDS.(A)Differentialchargedensitydistribution(green,electron-withdrawing;blue,electron-donating).(B)ContourplotoftheelectronlocalizationfunctionoftwoLiTFSIclusteredwithonePyDSmolecule.(C)TheMullikenchargedistributionalongtheMDsimulationsoflithiumnaturalatomsolvatedintheelectrolyte.Py-1andPy-2representthetwopyridineringsofPyDS.Thecarbon,hydrogen,nitrogen,sulfur,lithium,oxygen,andfluorineelementsareshowningray,white,blue,yellow,purple,red,andcyan,respectively.(D)TheintermediatestateofPyDSandLi0at56fs.ThesolventmoleculesaroundDOLandDMEareshowninwireframe.LiTFSIandLiNO3saltscanprotectPyDSagainstchemicaltowardNametal.Toinvestigatewhetherpyridinepolysulfidereactionwithlithium.Wealsohavetriedothersalts(i.e.,1MwithalongersulfurchainischemicallystablewithLi0,weLiFSIand1MLiPF6)toexplorewhethertheyhavethesameprepareddipyridyltrisulfideviathemethoddevelopedbyour27effectasLiTFSI.ItcanbeseenthattheOCVsofbothLi|Li-group.ItcanbeseenthattheOCVoftheLi|Li-CP-Py2S3cellCP-PyDScellsincreasedslightlyandremainedlowerthan0.2increasedslightlyandstabilizedat∼0.15Vafter8days(FigureVafter8days(FigureS11),indicatingthattheLi-CPdoesnotS13),indicatingthatPySisalsochemicallystablewithLi0.23reactwithPyDSinthepresenceof1MLiFSIorLiPF6.TheInaddition,weperformedDFTcalculationstodeeplyabovefindingssuggestlithiumsaltswouldbecomplexedwithinvestigatethemechanismbywhichPyDSisnoteasilyreducedPyDS,reducingitschemicalreactivitytowardreductionbyLi0.intheelectrolytecontainingLiTFSI.ConsideringthepyridineToverifythecomplexationbetweenPyDSandLiTFSI,7LinitrogenismoreelectronegativethancarboninbenzeneofNMRspectraofLiTFSIbeforeandafterinteractingwithPyDSPDS,thenitrogenpreferstowithdrawelectronsoutofthearecollected(Figure2E).Theresonancefor7LiofLiTFSIpyridineringandformthecoordinatebondwiththelithiumshiftsdownfieldafteraddingPyDS,from−0.918ppmtoionofLiTFSI,causingthecarbonatomsandhydrogenatoms−0.786ppm,whichsuggeststhatthecomplexationwithPyDSonthepyridineringtobeelectron-deficientasawhole(theleadstothedecreaseofelectronclouddensityaroundLi+incalculatedMullikenchargevalueofallatomsinLiTFSI25,26LiTFSI.Inaddition,weexploredwhetherPyDSisinactive(PyDS)beforeandafterinteractingwithPyDS(LiTFSI)istowardNa.WepreparedsodiatedCP(namedasNa-CP).ItshowninTableS3).ItcanbeclearlyseeninFigure3AthatthewasfoundthattheOCVoftheNa|Na-CP-PyDScellhasandeparted-electronfromthepyridineringisanessentialinitialOCVof∼1.28V,indicatingthatarapidchemicalcomponentofthechemicalbondbetweenLiandNatoms.reactionhasoccurredbetweenNa-CPandPyDSwhenthecellSimilarbehaviorwasobservedevenonemoresolventmoleculewasassembled.ThentheOCVofthecellincreasedlinearlytoiscoordinatedwithlithiumion(FigureS14A,B).Thenatural1.82Vafter15days(FigureS12).Hence,PyDSisactivebondorbitalanalysisrevealsthattheMayerbondorderofLi−903https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.ApplicationofPyDScatholyteinamembrane-freeredoxflowbattery.(A)Theschematicillustrationofamembrane-freeLi|PyDSredoxflowbattery.PyDScatholyteflowsthroughthesystemduringoperationandisstoredinatank.Ontheanodeside,thelithiumionizedPyDSisinactiveinchemicalreductionreactionbylithiummetal.(B)CyclingperformanceofthestaticLi|PDSandLi|PyDScellsatthecurrentdensityof1mAcm−2.Theseparatorsusedinthisworkareaporousseparator(Celgard2400).(C)ComparisonofconventionalRFBs,recentlyreportedmembrane-freeRFBs,andthisworkintermsofenergydensityandoutputpotential.(DandE)TheSEMimagesandphotographsoflithiumanodesurfacepairedwith(D)PyDSand(E)PDScatholytesaftercycling.Nis0.2(Figure3B),whichissimilartothose(0.23and0.25)lithiuminaPyDSsolutioninavialisshowninFigureS15.ofLi−OatLiTFSI(FigureS14C),showinganionicbondItcanlightfourLEDswhenthecellisdischarged.character.Indeed,the7LiNMRspectrainFigure2EconfirmToevaluatethecyclingperformanceofLi|PyDSandLi|PDSthecomplexationbetweenNatomsinPyDSandLi+inredoxflowbatteries,astaticcellconfigurationwasadoptedasLiTFSI.Subsequently,whenoneLi0isextractedfromtheCP,showninFigureS16.PyDScatholytewasinjectedinthetheelectrononLi0isprimarilyincontactwiththeelectron-cathodechamber.PyDSalmostdoesnotreactwithlithiumdeficientpyridineringthenattackstheS−Sbond.Accordingly,metalanode;therefore,theLi|PyDScellwithahighOCVof∼2.5Vachieveslargervolumetriccapacity(72.9AhL−1)andtheMDsimulationsinFigure3Cshowthattheobviouselectrontransportstartsfrom45fswhentheLi0isclosetothehighercapacityretentioncomparedwiththeLi|PDScell(29.5AhL−1)after25cyclesatlowcurrentdensity(0.1mAcm−2)carbonatom(C@pyridine)atabout2.64Å.Thentheelectrondelocalizesoverthepyridineringinthenext80fs.Itisworth(FigureS17).Furthermore,althoughthelithiummetalanodenotingtheLi0canstaymomentarilyonthetopofthepyridineisnotprepassivated,theLi|PyDScellcanstilldeliverlongcyclelifeof230cyclesandhighenergydensityof144.7WhL−1ringbecauseoftheelectrostaticinteraction(Figure3D).Atthebasedonthetotalvolumeofthe2Mcatholyteat1mAcm−2sametime,thelengthoftheS−SbondinPyDSisalmostunchangedalongthetrajectory(FigureS14D).withhighCoulombicefficiency(>99%)(FigureS18)andThisworkimpliesPyDSwouldbeasuitableactivematerialenergyefficiency(>82%)(Figure4B).Thisresultisvery37−39inthecatholyteforamembrane-freeLi-redoxflowbatterypositivecomparedwithconventionalRFBsandother(RFB)asitdoesnotreactwiththelithiummetalanode.membrane-freeRFBsreportedintheliterature(Figure28,34−36Recently,severalmembrane-freeflowbatterysystemshave4C),confirmingtheexcellentperformanceoftheLi|28−30beenproposed,suchasimmiscibleelectrolyteRFBsandPyDScellduringcycling.Incontrast,theLi|PDScellcannothybridRFBsinwhichtheanodeisusuallyasolid.Todesignworkat1mAcm−2.Thecycledlithiummetalsurfacewasmembrane-freehybridRFBs,twostrategiesaregenerallyexaminedbyscanningelectronmicroscopy(SEM).Asemployed:(1)selectingachemicallyinertanodeelectrodeillustratedinFigure4D,thecycledlithiummetalanodein(e.g.,Cd,Zn,orgraphite),whichcanpreventtheparasitictheLi|PyDScellshowsacontinuous,uniform,andhighlyreactionbetweentheactivematerialincatholyteandpackedmorphologynotaccompaniedbyanydendriticand31−34anode,and(2)prepassivatingtheactiveanodesurfacemossyLi.However,thelithiummetalanodeintheLi|PDScell35,37(i.e.,Li).Inthiswork,wefabricatedanovelmembrane-freehasaroughsurfacepittedwithlargegranularfeaturesthatcanbatterythatreliesonthechemicalinertreactivityofcathodeprovidepreferentialsitesfortheformationofdendritesandmaterialinliquidelectrolyte.Figure4AshowstheschematicofdeadLi(Figure4E).Thelargegrainsindicatethatlithiumistheproposedmembrane-freeLi|PyDSbattery.LithiumfoilisaggressivelycorrodedbyPDSinthecatholyte,resultinginusedastheanode,whilePyDSbysoakingcarbonfiberpaperinhomogeneouslocalcurrentdensities.ThecorrespondingelectrodeinthecatholyteisusedwithcarbonpaperasthesulfurmappingshowsthattheScontentofthecycledlithiumcurrentcollector(asshowninFigureS15).Anexperimentalmetalanodeinthemembrane-freeflowLi|PyDScellismuchdemonstrationofamembrane-freeLi|PyDSbatterywithlowerthanthatintheLi|PDScell(FigureS19),whichfurther904https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterindicatesthereactionactivityofPDStowardLi0ishigherthan(5)Pang,Q.;Liang,X.;Kwok,C.Y.;Nazar,L.F.AdvancesinthatofPyDS.lithium−sulfurbatteriesbasedonmultifunctionalcathodesandInsummary,weprovethatPyDSisinactiveinchemicalelectrolytes.Nat.Energy2016,1,16132.reductionreactionbyLi0becauseofthelithiumionizationin(6)Poizot,P.;Gaubicher,J.;Renault,S.;Dubois,L.;Liang,Y.;Yao,Y.OpportunitiesandChallengesforOrganicElectrodesinElectro-liquidelectrolyte,whichexplainsthatPyDScanbecycled5chemicalEnergyStorage.Chem.Rev.2020,120,6490−6557.timesbetterthanPDS.Thein-depthexperimentaland(7)Lu,Y.;Chen,J.ProspectsoforganicelectrodematerialsforsimulationanalysisrevealsthemechanismthatPyDSpracticallithiumbatteries.Nat.Rev.Chem.2020,4,127−142.moleculesareionizedbylithiumionsdelocalizingthecharge(8)Sun,T.;Xie,J.;Guo,W.;Li,D.S.;Zhang,Q.Covalent−OrganiconpyridineringsofPyDS,whichcanmomentarilystoreLi0asFrameworks:AdvancedOrganicElectrodeMaterialsforRechargeableanorganiclithiumstoragematerial,thuskeepingtheS−SbondBatteries.Adv.EnergyMater.2020,10,1904199.inert.Thisfindingissuccessfullyutilizedinamembrane-free(9)Wang,D.-Y.;Guo,W.;Fu,Y.Organosulfides:AnEmerginglithium-redoxflowbattery;theLi|PyDSflowcellexhibitsbetterClassofCathodeMaterialsforRechargeableLithiumBatteries.Acc.capacityretentionandhigherCoulombicefficiency(>99%)Chem.Res.2019,52,2290−2300.andenergyefficiency(>82%)thanthoseoftheLi|PDScell.(10)Wu,M.;Cui,Y.;Bhargav,A.;Losovyj,Y.;Siegel,A.;Agarwal,ThisworkagainrevealstheinterestingchargestorageM.;Ma,Y.;Fu,Y.Organotrisulfide:AHighCapacityCathodeMaterialforRechargeableLithiumBatteries.Angew.Chem.,Int.Ed.mechanisminorganosulfide,whichcannotonlyhelpimprove2016,55,10027−10031.theenergydensityoflithiumbatteriesbutalsoenablelong(11)Wu,M.;Bhargav,A.;Cui,Y.;Siegel,A.;Agarwal,M.;Ma,Y.;cyclelifeofalithium-redoxflowbatterywithoution-Fu,Y.HighlyReversibleDiphenylTrisulfideCatholyteforconductingmembranes.RechargeableLithiumBatteries.ACSEnergyLett.2016,1,1221−1226.■ASSOCIATEDCONTENT(12)Li,F.;Si,Y.;Li,Z.;Guo,W.;Fu,Y.Intermolecularcyclic*sıSupportingInformationpolysulfidesascathodematerialsforrechargeablelithiumbatteries.J.TheSupportingInformationisavailablefreeofchargeatMater.Chem.A2020,8,87−90.https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03496.(13)Li,F.;Si,Y.;Liu,B.;Li,Z.;Fu,Y.LithiumBenzenedithiolateCatholytesforRechargeableLithiumBatteries.Adv.Funct.Mater.Experimentalsection,FiguresS1−S19,andTablesS12019,29,1902223.andS2(PDF)(14)Xie,J.;Wang,Z.;Xu,Z.J.;Zhang,Q.TowardaHigh-PerformanceAll-PlasticFullBatterywithaSingleOrganicPolymeras■BothCathodeandAnode.Adv.EnergyMater.2018,8,1703509.AUTHORINFORMATION(15)Wang,D.-Y.;Si,Y.;Li,J.;Fu,Y.TuningtheelectrochemicalCorrespondingAuthorsbehavioroforganodisulfidesinrechargeablelithiumbatteriesusingN-YongzhuFu−CollegeofChemistry,ZhengzhouUniversity,containingheterocycles.J.Mater.Chem.A2019,7,7423−7429.Zhengzhou450001,P.R.China;orcid.org/0000-0003-(16)Guo,W.;Wawrzyniakowski,Z.D.;Cerda,M.M.;Bhargav,A.;3746-9884;Email:yfu@zzu.edu.cnPluth,M.D.;Ma,Y.;Fu,Y.Bis(aryl)TetrasulfidesasCathodeYubingSi−CollegeofChemistry,ZhengzhouUniversity,MaterialsforRechargeableLithiumBatteries.Chem.-Eur.J.2017,23,Zhengzhou450001,P.R.China;Email:ybsi@zzu.edu.cn16941−16947.(17)Li,X.;Zhang,H.;Mai,Z.;Zhang,H.;Vankelecom,I.IonAuthorsexchangemembranesforvanadiumredoxflowbattery(VRB)QianqianFan−CollegeofChemistry,ZhengzhouUniversity,applications.EnergyEnviron.Sci.2011,4,1147−1160.Zhengzhou450001,P.R.China(18)Schwenzer,B.;Zhang,J.;Kim,S.;Li,L.;Liu,J.;Yang,Z.WeiGuo−CollegeofChemistry,ZhengzhouUniversity,Membranedevelopmentforvanadiumredoxflowbatteries.Zhengzhou450001,P.R.ChinaChemSusChem2011,4,1388−1406.(19)Zhang,H.;Zhang,H.;Li,X.;Mai,Z.;Zhang,J.NanofiltrationCompletecontactinformationisavailableat:(NF)membranes:thenextgenerationseparatorsforallvanadiumhttps://pubs.acs.org/10.1021/acs.jpclett.0c03496redoxflowbatteries(VRBs)?EnergyEnviron.Sci.2011,4,1676−1679.Notes(20)Janoschka,T.;Martin,N.;Martin,U.;Friebe,C.;Morgenstern,Theauthorsdeclarenocompetingfinancialinterest.S.;Hiller,H.;Hager,M.D.;Schubert,U.S.Anaqueous,polymer-basedredox-flowbatteryusingnon-corrosive,safe,andlow-cost■ACKNOWLEDGMENTSmaterials.Nature2015,527,78−81.(21)Yuan,Z.;Zhu,X.;Li,M.;Lu,W.;Li,X.;Zhang,H.AHighlyThisworkwassupportedbytheNationalNaturalScienceIon-SelectiveZeoliteFlakeLayeronPorousMembranesforFlowFoundationofChina(GrantNos.U2004214,21975225,andBatteryApplications.Angew.Chem.,Int.Ed.2016,55,3058−3062.51902293)andtheChinaPostdoctoralScienceFoundation(22)Weng,G.-M.;Yang,B.;Liu,C.-Y.;Du,G.-Y.;Li,E.Y.;Lu,Y.-C.(No.2020M682329)Asymmetricallyl-activationoforganosulfidesforhigh-energyreversibleredoxflowbatteries.EnergyEnviron.Sci.2019,12,2244−■REFERENCES2252.(1)Dunn,B.;Kamath,H.;Tarascon,J.-M.ElectricalEnergyStorage(23)Fu,Y.;Zu,C.;Manthiram,A.InSitu-formedLi2SinLithiatedfortheGrid:ABatteryofChoices.Science2011,334,928−935.GraphiteElectrodesforLithium-SulfurBatteries.J.Am.Chem.Soc.(2)Whittingham,M.S.LithiumBatteriesandCathodeMaterials.2013,135,18044−18047.Chem.Rev.2004,104,4271−4301.(24)Nogueira,H.I.S.;Cruz,S.M.G.;Soares-Santos,P.C.R.;(3)Goodenough,J.B.;Park,K.S.TheLi-ionrechargeablebattery:aRibeiro-Claro,P.J.A.;Trindade,T.Surfaceadsorptionof4,4-perspective.J.Am.Chem.Soc.2013,135,1167−1176.dithiodipyridineand2,2-dithiodipyridineonsilvernanoparticles.J.(4)Yang,C.;Chen,J.;Ji,X.;Pollard,T.P.;Lu,X.;Sun,C.J.;Hou,RamanSpectrosc.2003,34,350−356.S.;Liu,Q.;Liu,C.;Qing,T.;Wang,Y.;Borodin,O.;Ren,Y.;Xu,K.;(25)Hou,T.Z.;Xu,W.T.;Chen,X.;Peng,H.J.;Huang,J.Q.;Wang,C.AqueousLi-ionbatteryenabledbyhalogenconversion-Zhang,Q.LithiumBondChemistryinLithium-SulfurBatteries.intercalationchemistryingraphite.Nature2019,569,245−250.Angew.Chem.,Int.Ed.2017,56,8178−8182.905https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(26)Qiao,B.;Leverick,G.M.;Zhao,W.;Flood,A.H.;Johnson,J.A.;Shao-Horn,Y.SupramolecularRegulationofAnionsEnhancesConductivityandTransferenceNumberofLithiuminLiquidElectrolytes.J.Am.Chem.Soc.2018,140,10932−10936.(27)Wang,D.-Y.;Si,Y.;Guo,W.;Fu,Y.LongCycleLifeOrganicPolysulfideCatholyteforRechargeableLithiumBatteries.Adv.Sci.2020,7,1902646.(28)Navalpotro,P.;Palma,J.;Anderson,M.;Marcilla,R.AMembrane-FreeRedoxFlowBatterywithTwoImmiscibleRedoxElectrolytes.Angew.Chem.,Int.Ed.2017,56,12460−12465.(29)Navalpotro,P.;Trujillo,C.;Montes,I.;Neves,C.M.S.S.;Palma,J.;Freire,M.G.;Coutinho,J.A.P.;Marcilla,R.Criticalaspectsofmembrane-freeaqueousbatterybasedontwoimmiscibleneutralelectrolytes.EnergyStorageMater.2020,26,400−407.(30)Navalpotro,P.;Neves,C.;Palma,J.;Freire,M.G.;Coutinho,J.A.P.;Marcilla,R.PioneeringUseofIonicLiquid-BasedAqueousBiphasicSystemsasMembrane-FreeBatteries.Adv.Sci.2018,5,1800576.(31)Xu,Y.;Wen,Y.;Cheng,J.;Cao,G.;Yang,Y.Cd-StudyonasingleflowacidCd−chloranilbattery.Electrochem.Commun.2009,11,1422−1424.(32)Leung,P.K.;Martin,T.;Shah,A.A.;Anderson,M.A.;Palma,J.Zn-Membrane-lessorganic-inorganicaqueousflowbatterieswithimprovedcellpotential.Chem.Commun.2016,52,14270−14273.(33)Leung,P.K.;Martin,T.;Shah,A.A.;Mohamed,M.R.;Anderson,M.A.;Palma,J.Zn-Membrane-lesshybridflowbatterybasedonlow-costelements.J.PowerSources2017,341,36−45.(34)Ding,Y.;Yu,G.ABio-Inspired,Heavy-Metal-Free,Dual-ElectrolyteLiquidBatterytowardsSustainableEnergyStorage.Angew.Chem.,Int.Ed.2016,55,4772−4776.(35)Yang,Y.;Zheng,G.;Cui,Y.Amembrane-freelithium/polysulfidesemi-liquidbatteryforlarge-scaleenergystorage.EnergyEnviron.Sci.2013,6,1552−1558.(36)Ding,Y.;Zhao,Y.;Yu,G.AMembrane-FreeFerrocene-BasedHigh-RateSemiliquidBattery.NanoLett.2015,15,4108−4113.(37)Zhao,Y.;Ding,Y.;Li,Y.;Peng,L.;Byon,H.R.;Goodenough,J.B.;Yu,G.Achemistryandmaterialperspectiveonlithiumredoxflowbatteriestowardshigh-densityelectricalenergystorage.Chem.Soc.Rev.2015,44,7968−7996.(38)Lim,H.S.;Lackner,A.M.;Knechtli,R.C.Zinc-BromineSecondaryBattery.J.Electrochem.Soc.1977,124,1154.(39)Yang,Z.;Zhang,J.;Kintner-Meyer,M.C.;Lu,X.;Choi,D.;Lemmon,J.P.;Liu,J.Electrochemicalenergystorageforgreengrid.■Chem.Rev.2011,111,3577−3613.NOTEADDEDAFTERASAPPUBLICATIONDuetoanACSproductionerror,thispaperwasoriginallypublishedASAPwithincorrectpagination.ThiswascorrectedintheversionpublishedonJanuary14,2021.906https://dx.doi.org/10.1021/acs.jpclett.0c03496J.Phys.Chem.Lett.2021,12,900−906
此文档下载收益归作者所有