《Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands A Computational Study of Hydrogen Coverage E ff ects - Santana, Mel - 2021 -》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCCArticleHydrogenAdsorptiononAu-SupportedPtandPdNanoislands:AComputationalStudyofHydrogenCoverageEffectsJuanA.Santana*andJoshuaMeléndez-RiveraCiteThis:J.Phys.Chem.C2021,125,5110−5115ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:WehavestudiedthedissociativeadsorptionofhydrogenunderhighcoverageconditionsofadsorbedhydrogenonPdandPtnanoislandssupportedonAu(111)usingdensityfunctionaltheorycalculations.TheresultsrevealthatforPd/Au(111),thefreeenergyofhydrogenadsorptionΔGiscloseto0kJ/molwhenthecoverageofadsorbedhydrogenisnear1ML,wheretheavailablecatalyticsitesarelocatedattheedgesofthePdnanoislands.InthecaseofPt/Au(111),ΔG≈0kJ/molunderabroadrangeofhydrogencoverageconditions,from1to3ML,dependingonthesizeofthePtnanoislands.ThisisthecasebecausetheavailablecatalyticsitesarelocatedatboththestepsandterracesofPtnanoislands.ThesefindingsindicatethatAusurfaceswithPdorPtnanoislandsoffercatalyticsiteswithΔG≈0forhydrogenreactions,onekeyfactorforanidealelectrocatalystforhydrogenreactions.101.INTRODUCTIONboundaryandtheinnerregionofthePtnanoislands.Liaoand12ThedevelopmentandoptimizationofactiveanddurableYaupreparedPtnanoislandswithdifferentphasesonAu(111)nanostructuredsurfacecatalystsrelyheavilyonourunder-andfoundthattheactivitytowardHERwasuniqueineachstandingofhowparticlesize,sitecoordination,andsubstratephase,suggestingtheexistenceofmultipletypesofadsorptioneffectsmodulatecatalyticproperties.1−7Thehydrogensites.TheseresultsshowthattheinterfaceformedinAu-oxidation/evolutionreactions(HOR/HER)havebeenexten-supportedmetalnanoparticlesiscomplex,andtheinterpretationsivelyexploredtostudytheeffectsofparticlesize,activesiteofexperimentalfindingsrequiresrealisticatomic-levelmodelscoordination,andsubstrateeffectsonPtandPdnanoparticlessubstantiatedbyaccuratecalculations.8−27Inthisregard,variousdensityfunctionaltheory(DFT)supportedonAu(111).ThereactivitytowardHOR/HERincreasesconsiderablywhenAu(111)withsub-monolayercalculationshavebeenperformedtostudytheadsorptionof8,9,17,18,37,19,26,388,9,17coveragesofPtorPdisemployedasanelectrocatalystinsteadhydrogenonPdandPtnanoislandsofthecorrespondingPdandPtsurfacesortheiroverlayersonsupportedonAu(111).Theresultsofthesecalculationsreveal11−16,20−25,27Au.Thesupportedelectrocatalystsaretwo-dimen-thattherearemultiplestableadsorptionsitesforhydrogenonsional(2D)nanoparticles(nanoislands)withdiametersof2−30PdandPtnanoislandonAu(111)underthelow-coverage11−16,20,22−24,27nm.Asimilarlyenhancedelectrocatalyticactivityconditionofadsorbedhydrogen.TheidentifiedadsorptionsitesDownloadedviaUNIVOFPRINCEEDWARDISLANDonMay16,2021at14:49:21(UTC).Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.forHERhasbeenreportedfornanoislandsofRhonAuandPdincludethehollowsites(hydrogenis3-foldcoordinated),thesurfacesaswellasforbimetallicnanoislandsofPdRhonAuandbridgesite(hydrogenis2-foldcoordinated),andthesitesatthe28,29,11,30Ptsurfaces.Au-supportedmetalnanoislandsareusefulPt/AuandPd/Auboundaries(rimsites).8,9,17−19,26,38However,model-systemsnotonlyforHOR/HERbutalsoformanyotheronekeyfactorforanidealHOR/HERelectrocatalystsistohave31catalyticprocesses,includingC−Cbondsplitting,methanol,3233afreeenergyofhydrogenadsorptionnearzero,ΔG(θHads)≈andformicacidoxidation,andelectro-oxidationofCO.37,39−43Au-supportedmetalnanoislandsexperiencesize-dependent0.ΔG(θHads)isafunctionofthecoverageofadsorbedcompressivestressduetofinite-sizeeffects,16,19,33−35resultingin37,39−43hydrogenθH.Furthermore,experimentalandcomputa-adstheformationofsupportednanoislandsthatarenotalignedwithtionalresultsindicatethatHOR/HERatlowoverpotentialonPt12thesubstrate.Asaresult,Au-supportedmetalnanoislandscanelectrodes,forinstance,takeplaceunderhighcoveragehaveabroaderrangeofadsorptionsitesthanregular9,17−19,2610surfaces.TheworksofLiangetal.andLiaoandYa12showsuchabroadrangeofadsorptionsites.Liangetal.10Received:December29,2020usedtheelectrochemicalscanningtunnelingmicroscope(n-Revised:February16,2021ECSTM)36techniqueandshowedthatthecatalyticactivityforPublished:March1,2021HERismaximalatthePd/AuboundaryonPdnanoislandson10Au(111).Ontheotherhand,PtnanoislandsonAu(111)displayedcatalyticactivityratheruniformlyacrossthePt/Au©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpcc.0c115665110J.Phys.Chem.C2021,125,5110−5115
1TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle39,40,44−48conditionofspectatoradsorbedhydrogen.Therefore,molecule,andthemetalslab,respectively.ThenumberoftheactivesitesforHOR/HERonPtandPdnanoislandsadsorbedhydrogenatomsisnH.ThenumberofsurfacemetalsupportedonAu(111)arelikelymetalsiteswithpreadsorbedatomsisN,andθHads=nH/Nisthecoverageofadsorbedhydrogenatoms.hydrogen.ForhydrogenadsorbedonPtnandPdnsupportedonInthepresentwork,westudythedissociativeadsorptionofAu(111),thehydrogencoverageθHisevaluatedastheratiomolecularhydrogenunderhighcoverageconditionsofadsorbedadshydrogenonPtandPdnanoislandssupportedonAu(111).ThenH/n,wheren=7,19,31,or61.ThedifferentialhydrogenadsorptionenergywascalculatedassystemsofPtnandPdn(n=7,19,37,and61)supportedonAu(111)areemployedasmodelsofmetal−supportednano-NΔE()θH=[−−EnNEnint(/)int((1)/)N]sizedmetalislands.ThesemodelscanbringinsightintomultipleadsΔn(2)aspectsofHOR/HERonPtandPdnanoislandssupportedonAu(111),including(i)thechangeinΔGwiththehydrogenFinally,thefreeenergyofadsorptionΔG(θHads)isapproximatedcoverageθH,(ii)thechangeinΔGwithparticlesize,and(iii)asadswhetherornottherecouldbemetalsiteswithΔG(θH)≈0onadsΔ≈GE()θθHHΔ+()ZΔPE−TΔSadsadsPtandPdnanoislandssupportedonAu(111).Moreover,these−1systemsarereasonablemodelsofadsorptionsitesonterraces,=ΔE()2θH+3kJmol(3)adsedges,corners,andkinksofmetal-supportedmetalnanoislands.whereΔZPEandTΔSarethedifferenceinzero-pointenergyandentropy,respectively,betweenadsorbedhydrogenand2.METHODSmolecularhydrogeninthegasphase.AsshowninpreviousDFTcalculationswerecarriedoutemployingtheViennaAb-calculations,42,43formostmetalsurfacesΔZPEand−TΔS49−51initioSimulationPackage(VASP).ThePerdew−Burke−correctionsforthedissociative-adsorptionofHaddupto522Ernzerhof(PBE)variantofthegeneralizedgradientapproximately23kJmol−1perHat300K.Weapproximateadsapproximation(GGA)wasusedtorepresentexchange-thefreeenergybyadding23kJmol−1tothedifferentialcorrelationeffects.Theioniccoresweredescribedbytheadsorptionenergy.ThecalculatedbondenergyofH2is−436kJ53,54projectoraugmented-wave(PAW)method.Theelectronicmol−1and−408kJmol−1afterZPEcorrection.one-particlewavefunctionswereexpandedonaplane-wavebasissetuptoanenergycutoffof350eV.Thetechniqueof3.RESULTSANDDISCUSSIONfractionaloccupationnumbers,withalevelwidthof0.05eVwasTostudytheeffectsofthecoverageofadsorbedhydrogenontheused.AlltotalenergieswereextrapolatedtokbT=0eV.ThedissociativeadsorptionofmolecularhydrogenonPtandPdinteractionbetweentherepeatedslabswasmodifiedforadipolenanoislandssupportedonAu(111),akeystepistoidentifythecorrectionasimplementedinVASP.Werestrictedourlow-energyconfigurationsofsystemscomprisedofmultiplecalculationstothespin-averagedstrategybecausethehydrogenatomsadsorbedonthemetalnanoislands.Thereareadsorptionenergiesofhydrogenevaluatedfromspin-polarized−1multipleavailablemethodologiestoautonomouslyfindlow-andspin-averagedcalculationsdifferonlyby1kJmol.58−61energyconfigurationsofchemicalsystems.However,Theeffectsofthecoverageofadsorbedhydrogenonthehydrogenatomsareabsorbedonwell-definedmetalsurfacedissociativeadsorptionofmolecularhydrogenwerestudiedonsitesonPt(orPd)onAu(111),andlow-energyconfigurationsPtnandPdn(n=7,19,31,and61)supportedonAu(111).Forcanbeestimatedwithstandardoptimizationmethods.Wecomparison,calculationswerealsoperformedforthehydrogenexploredmultipleconfigurationsofhydrogenadsorbedonPtnadsorptiononPdandPtoverlayersonAu(111)surfaces.TheandPdn(n=7,19,31,and61)nanoislandsdepositedonPtnandPdn(n=7,19,31,and61)modelsweresimulatedwithAu(111).However,wefocusourdiscussiononthelow-energy(4×4),(6×6),(8×8),and(10×10)surfacesmodelsoffourconfigurationsandprovideresultsforalltheconfigurationsthatatomiclayers,separatedbyavacuumregionover10Å.DuringwereexploredinTablesS1−S5andFiguresS1−S7inthegeometryoptimization,thetwo“bottom”atomiclayersoftheSupportingInformation.surfacemodelswerekeptfixedatthecalculatedlattice55Figure1ashowsΔG(θH)forthedissociativeadsorptionofconstants,whiletheremainingatomswereallowedtorelaxadsuntilallresidualforceswerelessthan0.02eV/Å.ForhydrogenonPt19andPd19supportedAu(111)asestimatedwithgeometricaloptimization,Brillouinzoneintegrationswereeq3.Figure1b−kshowsthestructureofadsorbedhydrogenoncarriedoutwith(5×5×1),(3×3×1),and(1×1×1)k-thenanoislands.Therearevariousobservationsworthpointsampling56forthe(4×4),(6×6),andthelargersurfacementioning.First,Pt19andPd19onAu(111)showdifferentcells,respectively.Weusedafinermeshofk-pointstocalculateΔG(θHads)profiles.However,forbothmetals,ΔG(θHads)showsenergeticandelectronicproperties:(7×7×1),(5×5×1),andsomefluctuationbecausehydrogenatomsfirstsaturatethelow-(3×3×1)forthe(4×4),(6×6),andthelargersurfacecells,energysites,andasthesesitesareoccupied,themoreenergeticrespectively.vacantsitesbecomefeasible.AtlowhydrogencoveragesθH 2TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticlemol.TheresultsforΔG(θH)≈0kJ/molindicatethattheadsactivesiteonPt19/Aucanbethehollowsitesontheterrace(Figure1c,e)andalsothesitesatthePt/Auboundary(Figure1d,f).Ontheotherhand,onlythesitesatthePd/AuboundaryhaveΔG(θHads)≈0kJ/molforPd19/Au(Figure1h,i).Thecoverageofadsorbedhydrogenattheequilibriumpotential(θ0)),whereΔG(θ)≈0,isakeyparametertounderstandHadsHads37,39theHOR/HERonmetalsurfaceandmetalnanoparticles.Thevalueofθ0isalsoanimportantquantitytohelpidentifyHads40,41,70thenatureoftheactivesiteforHOR/HER.Thefindings10inFigure1areinlinewiththeworkofLiangetal.showingthatthecatalyticactivityforHERismaximalatthePd/AuboundaryinPdnanoislandsonAu(111)butuniformacrosstheinnerandedgeregionsofPtnanoislandsonAu(111).Now,weturntoexaminenanoislandssmallerorlargerthanPt19andPd19onAu(111).Figure1.(a)FreeenergyofadsorptionΔGadsasafunctionofhydrogencoverageonPt19andPd19onAu(111).Thelowerpanelsshowthestructureof0.63,0.79,1.26,1.74,and2.05MLofadsorbedhydrogenatomson(b−f)Pt19and(g−k)Pd19.Theredcirclesonpanelsb−kindicatethehydrogenadsorptionsitesthatarebeingfilledattheindicatehydrogencoverage.NumericalvaluesforΔGadsareprovidedinTableS2oftheSupportingInformation.ofhydrogenwithlowcoordination,themetal-HbondderivesfromtheinteractionofH-sanddorbitalsofthemetal,64whichisFigure2.FreeenergyofadsorptionΔGadsasafunctionofhydrogencoverageon(a)Ptnand(b)Pdn(n=19and61)onAu(111).Resultsratherinsensitivetothestabilizationofsorbitalsinthemetal.arealsoincludedforoneoverlayer(1ML)ofPtandPdonAu(111).Therefore,hydrogenpreferslowcoordinationonPtbuthigh17NumericalvaluesareprovidedinTablesS2−S5oftheSupportingcoordinationofPd.Inotherwords,theedgesversusterracesInformation.locationpreferenceofhydrogenonPtandPdmainlycomesfromtheopenshell5d96s1electronicconfigurationofPtandclosed-shell4d105s0electronicconfigurationofPd.Figure2displaysΔG(θ)forPtandPd(n=19and61)onHadsnnThesecondobservationinFigure1aisthatΔG(θHads)Au(111)andPtandPdoverlayersonAu(111).ThegeneralincreasesforbothPt19andPd19onAu(111)untilreachingbehaviordescribedaboveofΔG(θHads)forPt19andPd19onvaluescloseto0kJ/molathydrogencoveragesθH≈1ML.AtAu(111)isalsoobservedfortheothernanoislands;resultsforadshighervaluesofθHads,ΔG(θHads)forPd19continuestoincreasePtnandPdn(n=7and37)onAu(111)areprovidedinFigureS9oftheSupportingInformation.AkeyfindingfromcomparingbutthatofPt19fluctuatesaroundΔG(θHads)≈0untilθHads≈2.1ΔG(θHads)forPtnandPdnonAu(111)isthatthehydrogenML.NotethatforPd19/Au,themaximumpossibleθHads≈1MLcoverageθHadswhereΔG(θHads)≈0changeswiththesizeofthebecauseathighercoverage,ΔG(θH)>0kJ/mol,andtheadsPtnanoislandsbutremainbasicallyconstantforPd.Sucheffectadsorbedhydrogenintermediateswillnotbestableat300K.comesfromhydrogenlocatingpreferentiallyontheedgesofPtTheseresultsshowthatPd19reachedfullsaturationatlowernanoislands.ThenumberofedgesitesdecreaseswithincreasinghydrogencoveragesthanPt19.Indeed,Ptclustershavebeenparticlesize,resultingintheobservedsizedependencyofθshowntohaveamuchhigherhydrogenadsorptioncapacitythanHads65−67whereΔG(θH)≈0forPtbutnotforPd.InthecaseofPtandPd.ThehigherhydrogencapacityofPtcanbeexplainedbyadsthefactthathydrogenpreferslowcoordinationonPtbuthighPdoverlayersonAu(111)surfaces,ΔG(θH)isverysimilarforadscoordinationofPd.Also,therepulsiveinteractionsbetweenthebothsystems.Aspreviouslyreported,39,46,47,57,71thehydrogenadsorbedhydrogenatomsareexpectedtobelargerforPd19/Auatomsarepreferentiallyadsorbedonhollowsitesupto1MLonbecausethechargethatistransferredtoadsorbedhydrogenisbothPtandPdoverlayersonAu(111).ΔG(θH)increaseswithadshigherfromPdthanPtclusters;seeFigureS8oftheSupporting68,69increasingθHduetotherepulsiveinteractionsbetweenInformationforaBadertypechargeanalysis,whereaclearads72distinctioncanbeobservedforthechargetransferredfromPdadsorbedhydrogenatoms.Afterallthehollowsitesare39,46,47,57,71andPttotheadsorbedhydrogenatomsasexpectedfromtheiroccupied,hydrogenadsorbsonthetopsites.differentworkfunction(5.70eVforPtvs5.23eVforPd).55ΔG(θH)≈0isreachedatcoveragesθHcloseto1MLonadsadsAthirdandfinalobservationinFigure1aregardsthelocationbothPtandPdoverlayersonAu(111)surfaces.However,theofactivesitesonPt19/AuandPd19/AuwhenΔG(θHads)≈0kJ/overlayeredsurfacesdonotshowadsorptionsiteswith5112https://dx.doi.org/10.1021/acs.jpcc.0c11566J.Phys.Chem.C2021,125,5110−5115 3TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleΔG(θHads)≈0,insharpcontrastwithPtnandPdnnanoislandshydrogendissociativeenergyontheAu(111)surface.ThevalueofΔG(H@Au)dependsonthesizeofthenanoislandsandissupportedonAu(111).ThepresentresultscanhelpexplainthelargeronAusitesthatarenearthenanoislands,butitisover30kJmol−1;seeTablesS2andS3inSupportingInformationandobservedincreaseincatalyticactivityatlowsubmonolayer1721,22,25ourpreviousworkfordetails.Therefore,thisvalueshouldbecoveragesofPdandPtonAu(111).PdandPtclosetothelowestlimitforEdiffbecauseadsorbedhydrogenwillnanoislandsonAu(111)haveidealcatalyticsitesforhydrogennotbestablewhenΔG(θH)>0kJ/mol.Ourestimatedadsreactions,i.e.,hydrogenadsorptionsiteswithΔG(θH)≈0.energiesforhydrogenspilloverfromPtorPdnanoislandstoadswell-definedAu(111)surfacesshowthatsuchaprocessisnotthermodynamicallyfavorableevenunderhighcoverageconditionsofadsorbedhydrogen.TheevolutionofH2willtakeplacebeforehydrogenspilloverstotheAu(111)surface.Thisresultreflectsthelowreactivityofwell-definedAu(111)surfacestowardthehydrogenadsorption.Thecasecouldbe13differentforPtandPdnanoislandsoverdefectedAusurfacesandAusurfaceswithembeddedPtorPdatoms(alloyedsurfaces),whichcouldhavemoreactiveAusites.4.CONCLUSIONSDFTcalculationswereperformedtostudythedissociativeFigure3.Averagenearest-neighbordistanceasafunctionofhydrogenadsorptionofmolecularhydrogenunderhighcoveragecoverageon(a)Ptnand(b)Pdn(n=19,31,and61)onAu(111).TheconditionsofadsorbedhydrogenonPtnandPdn(n=7,19,errorbarsindicatethestandarddeviationofthedistances.Numerical31,and61)supportedonAu(111).ThesemetalnanoislandsvaluesareprovidedinTablesS2−S4oftheSupportingInformation.representmodelsoftheadsorptionsitespresentunderlowcoverageconditionsofPdandPtonAu(111)aswellasadsorptionsitesatthecornerandkinkdefectsinextendedFigure3displaystheaverage⟨Pt−Pt⟩and⟨Pd−Pd⟩nearest-overlayeredAusurfaces.TheresultsofthecalculationsshowneighbordistanceasafunctionofhydrogencoverageθH.ForadsthatthefreeenergyofhydrogenadsorptionΔG(θH)dependsadsbothmetals,theaveragemetaldistancesincreasewithhydrogenstronglyonthehydrogencoverageonPdandPtnanoislandsoncoverageasexpectedfromthebondorderconservationAu(111).Therefore,computationalidentificationofcatalyticprinciple.TheaveragemetaldistancesalsoshowfluctuationsiteswithΔG(θH)≈0onthesesurfacesrequiresthewithhydrogencoveragebecauseofthechangeinthehydrogenadssimulationofhighcoverageconditionsofadsorbedhydrogen.absorptionsite.UponsaturationofmostPdnanoislandswithhydrogenatoms,wherecoveragesθHads≈1ML,the⟨Pd−Pd⟩InthecasesofPtnandPdnsupportedonAu(111),theresultsshowthatthereareadsorptionsiteswithΔG(θH)≈00anddistancesincreasetovaluescloseto2.9Å.TheonlyexceptionisadsthatthesesitesaredifferentonPdandPt.ForPdnanoislands,Pd7/Au,wherethe⟨Pd−Pd⟩distancesreachvaluescloseto2.82Å;resultsforPt7/AuandPd7/AuareprovidedinFigureS10ofvaluesofΔG(θHads)≈00werefoundforhydrogenadsorbedontheSupportingInformation.InthecaseofPtnanoislands,thethePd/Auboundary.ForPtnanoislands,thereareadsorption⟨Pd−Pd⟩distancesincreasetovaluescloseto2.85ÅuponsiteswithΔG(θH)≈0bothatthePt/Auboundarybutalsoonadssaturationwithhydrogenatoms.EstimatesofsuchchangesintheterracesitesofthePtnanoislands.Thepresenceofsiteswith⟨Pt−Pt⟩and⟨Pd−Pd⟩withhydrogencoverageθHadscouldbeΔG(θH)≈0canhelpexplainthereportedincreasedcatalyticadsusefulforthecharacterizationofAu-supportedPdandPtactivityoflowsub-monolayercoverageofbothPdandPton12nanoislandsunderelectrochemicalconditions.Au(111).ThedifferentactivesitesonPdandPthelptoOnefinalaspectthatcanbeexploredwithourmodelsofPtrationalizethefactthatcatalyticactivityforHERonPdandPdnanoislandssupportedonAu(111)isthepossibilityofnanoislandsonAu(111)isobservedmainlyonthePd/AuthespilloverofatomichydrogenfromtheactivemetaltotheAuboundary.13,20,27substrate.Hydrogenspilloverhasbeenobservedandstudiedonsystemscompriseofaregular(111)metalsurfacewithembeddedPdatoms.73Therefore,hydrogenspillovercould■ASSOCIATEDCONTENT*sıSupportingInformationbeenhancingthecatalyticactivityofmetal-supportedmetalcatalystsatsub-monolayercoverages.Yet,weexploredtheTheSupportingInformationisavailablefreeofchargeathydrogenspilloveronsmallPtandPdclustersonAu(111).17https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11566.Theenergyforthemigration(diffusionenergy,Ediff)ofFiguresandtableswithnumericalvaluesofthecalculatedhydrogenatoms(hydrogenspillover)fromPt3andPd3tothepropertiesofhydrogenadsorbedonPtnandPdn(n=7,Au(111)surfacewascalculatedat80kJmol−1and38kJmol−1,19,37,and61)nanoislandssupportedonAu(111)17respectively.Suchresultssuggestthatthespilloverof(PDF)hydrogenplaysnoneorverylittleroleinthecatalysisofhydrogenonPtandPdnanoislandsonAu(111).Thatcalculated17diffusionenergiescorrespondtolow-coverageconditionsof■AUTHORINFORMATIONadsorbedhydrogen,wheretherearenotrepulsionsbetweenCorrespondingAuthoradsorbedH.However,thediffusionenergycanbeapproximatedJuanA.Santana−DepartmentofChemistry,UniversityofasEdiff≈ΔG(H@Au)−ΔG(θHads),whereΔG(H@Au)isthePuertoRicoatCayey,Cayey,PuertoRico00737,United5113https://dx.doi.org/10.1021/acs.jpcc.0c11566J.Phys.Chem.C2021,125,5110−5115 4TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticleStates;orcid.org/0000-0003-2349-6312;(13)Ostermayr,C.;Stimming,U.ElectrocatalyticActivityofEmail:juan.santana6@upr.eduPlatinumSubmonolayersonDefect-RichAu(111).Surf.Sci.2015,631,229−234.Author(14)Smiljanic,M.;Srejić,I.;Grgur,B.;Rakoćevič,Z.;Ś̌trbac,S.JoshuaMeléndez-Rivera−DepartmentofChemistry,CatalysisofHydrogenEvolutiononDifferentPd/Au(111)Nanostruc-UniversityofPuertoRicoatCayey,Cayey,PuertoRico00737,turesinAlkalineSolution.Electrochim.Acta2013,88,589−596.(15)Smiljanic,M.;Srejić,I.;Grgur,B.;Rakoćevič,Z.;Ś̌trbac,S.UnitedStatesCatalysisofHydrogenEvolutiononAu(111)ModifiedbySponta-Completecontactinformationisavailableat:neouslyDepositedPdNanoislands.Electrocatalysis2012,3,369−375.https://pubs.acs.org/10.1021/acs.jpcc.0c11566(16)Bae,S.-E.;Gokcen,D.;Liu,P.;Mohammadi,P.;Brankovic,S.R.SizeEffectsinMonolayerCatalysisModelStudy:PtSubmonolayersNotesonAu(111).Electrocatalysis2012,3,203−210.(17)Santana,J.A.;Rösch,N.HydrogenAdsorptiononandSpilloverTheauthorsdeclarenocompetingfinancialinterest.fromAu-andCu-SupportedPt3andPd3Clusters:ADensityFunctionalStudy.Phys.Chem.Chem.Phys.2012,14,16062−16069.■ACKNOWLEDGMENTS(18)Quaino,P.;Santos,E.;Wolfschmidt,H.;Montero,M.A.;Stimming,U.TheoryMeetsExperiment:ElectrocatalysisofHydrogenThisprojectwassupportedbythe“FondoInstitucionalparaelOxidation/EvolutionatPd-AuNanostructures.Catal.Today2011,DesarrollodelaInvestigación(FIDI2019-2020)”ofthe177,55−63.UniversityofPuertoRicoatCayey.J.M.R.waspartially(19)Björketun,M.E.;Karlberg,G.S.;Rossmeisl,J.;Chorkendorff,I.;supportedbytheNationalAeronauticsandSpaceAdmin-Wolfschmidt,H.;Stimming,U.;Nørskov,J.K.HydrogenEvolutiononistration(NASA)TrainingGrantNo.NNX15AI11H.TheAu(111)CoveredwithSubmonolayersofPd.Phys.Rev.B:Condens.contentissolelytheresponsibilityoftheauthorsanddoesnotMatterMater.Phys.2011,84,045407.necessarilyrepresenttheofficialviewsofNASA.Calculations(20)Wolfschmidt,H.;Paschos,O.;Stimming,U.HydrogenwereperformedonthecomputingfacilityattheUniversityofReactionsonNanostructuredSurfaces.InFuelCellScience;PuertoRicoatCayey,whichissupportedinpartbytheNationalWieckowski,A.,Nørskov,J.K.,Eds.,JohnWiley&Sons,Inc.,2010;InstituteofGeneralMedicalSciencesoftheNationalInstitutespp1−70.ofHealththroughGrantNIHNIGMS/INBREP20GM103475-(21)Wolfschmidt,H.;Bussar,R.;Stimming,U.ChargeTransfer15.ItscontentsaresolelytheresponsibilityoftheauthorsanddoReactionsatNanostructuredAu(111)Surfaces:InfluenceoftheSubstrateMaterialonElectrocatalyticActivity.J.Phys.:Condens.MatternotnecessarilyrepresenttheofficialviewoftheNIGMSorNIH.2008,20,374127.(22)Pandelov,S.;Stimming,U.ReactivityofMonolayersandNano-■REFERENCESIslandsofPalladiumonAu(111)withRespecttoProtonReduction.(1)Astruc,D.Introduction:NanoparticlesinCatalysis.Chem.Rev.Electrochim.Acta2007,52,5548−5555.2020,120,461−463.(23)Steidtner,J.;Hernandez,F.;Baltruschat,H.Electrocatalytic(2)Xie,C.;Niu,Z.;Kim,D.;Li,M.;Yang,P.SurfaceandInterfaceReactivityofPdMonolayersandMonatomicChainsonAu.J.Phys.ControlinNanoparticleCatalysis.Chem.Rev.2020,120,1184−1249.Chem.C2007,111,12320−12327.(3)Li,Z.;Ji,S.;Liu,Y.;Cao,X.;Tian,S.;Chen,Y.;Niu,Z.;Li,Y.Well-(24)Hernandez,F.;Baltruschat,H.ElectrochemicalCharacterizationDefinedMaterialsforHeterogeneousCatalysis:FromNanoparticlestoofGoldSteppedSurfacesModifiedwithPd.Langmuir2006,22,4877−IsolatedSingle-AtomSites.Chem.Rev.2020,120,623−682.4884.(4)Du,Y.;Sheng,H.;Astruc,D.;Zhu,M.AtomicallyPreciseNoble(25)Kibler,L.A.HydrogenElectrocatalysis.ChemPhysChem2006,7,MetalNanoclustersasEfficientCatalysts:ABridgebetweenStructure985−991.andProperties.Chem.Rev.2020,120,526−622.(26)Roudgar,A.;Groß,A.LocalReactivityofSupportedMetal(5)Trindell,J.A.;Duan,Z.;Henkelman,G.;Crooks,R.M.Well-Clusters:PdnonAu(111).Surf.Sci.2004,559,L180−L186.DefinedNanoparticleElectrocatalystsfortheRefinementofTheory.(27)Eikerling,M.;Meier,J.;Stimming,U.HydrogenEvolutionataChem.Rev.2020,120,814−850.SingleSupportedNanoparticle:AKineticModel.Z.Phys.Chem.2003,(6)Zhu,J.;Hu,L.;Zhao,P.;Lee,L.Y.S.;Wong,K.-Y.Recent217,395−414.AdvancesinElectrocatalyticHydrogenEvolutionUsingNanoparticles.(28)Smiljanic,M.;Srejić,I.;Grgur,B.;Rakoćevič,Z.;Ś̌trbac,S.Chem.Rev.2020,120,851−918.HydrogenEvolutiononAu(111)CatalyzedbyRhodiumNanoislands.(7)Berwanger,J.;Polesya,S.;Mankovsky,S.;Ebert,H.;Giessibl,F.J.Electrochem.Commun.2013,28,37−39.AtomicallyResolvedChemicalReactivityofSmallFeClusters.Phys.(29)Štrbac,S.;Smiljanic,M.;Rakoćevič,Z.Electrocatalysisof́Rev.Lett.2020,124,096001.HydrogenEvolutiononPolycrystallinePalladiumbyRhodium(8)Santana,J.A.;Cruz,B.;Melendez-Rivera,J.;Rösch,N.StrainandNanoislandsinAlkalineSolution.J.Electroanal.Chem.2015,755,Low-CoordinationEffectsonMonolayerNanoislandsofPdandPton115−121.Au(111):AComparativeAnalysisBasedonDensityFunctional(30)Smiljanic,M.;Srejić,I.;Potoćnik,J.;Mitrič,M.;Rakoćevič,Z.;́Results.J.Phys.Chem.C2020,124,13225−13230.Štrbac,S.SynergisticElectrocatalyticEffectofPdandRhNanoislands(9)Schulte,E.;Santos,E.;Quaino,P.ReactivityofBimetallicCo-DepositedonAu(Poly)onHERinAlkalineSolution.Int.J.NanostructuredElectrocatalystsfortheHydrogenAdsorption.AnHydrogenEnergy2018,43,19420−19431.AtomisticView.Surf.Sci.2020,697,121605.(31)Loukrakpam,R.;Yuan,Q.;Petkov,V.;Gan,L.;Rudi,S.;Yang,R.;(10)Liang,Y.;Csoklich,C.;McLaughlin,D.;Schneider,O.;Huang,Y.;Brankovic,S.R.;Strasser,P.EfficientC-CBondSplittingonBandarenka,A.S.RevealingActiveSitesforHydrogenEvolutionatPtMonolayerandSub-MonolayerCatalystsduringEthanolElectro-PtandPdAtomicLayersonAuSurfaces.ACSAppl.Mater.InterfacesOxidation:PtLayerStrainandMorphologyEffects.Phys.Chem.Chem.2019,11,12476−12480.Phys.2014,16,18866−18876.(11)Smiljanic,M.;Rakoćevič,Z.;Ś̌trbac,S.Electrocatalysisof(32)Ahn,S.H.;Liu,Y.;Moffat,T.P.UltrathinPlatinumFilmsforHydrogenEvolutionReactiononTri-MetallicRh@Pd/Pt(Poly)MethanolandFormicAcidOxidation:ActivityasaFunctionofFilmElectrode.Int.J.HydrogenEnergy2018,43,2763−2771.ThicknessandCoverage.ACSCatal.2015,5,2124−2136.(12)Liao,W.;Yau,S.Au(111)-SupportedPtMonolayerastheMost(33)Grabow,L.C.;Yuan,Q.;Doan,H.A.;Brankovic,S.R.Novel2DActiveElectrocatalysttowardHydrogenOxidationandEvolutionRuPtCore-EdgeNanoclusterCatalystforCOElectro-Oxidation.Surf.ReactionsinSulfuricAcid.J.Phys.Chem.C2017,121,19218−19225.Sci.2015,640,50−58.5114https://dx.doi.org/10.1021/acs.jpcc.0c11566J.Phys.Chem.C2021,125,5110−5115 5TheJournalofPhysicalChemistryCpubs.acs.org/JPCCArticle(34)Yuan,Q.;Doan,H.A.;Grabow,L.C.;Brankovic,S.R.FiniteSize(55)Santana,J.A.;Rösch,N.Metal-SupportedMetalClusters:AEffectsinSubmonolayerCatalystsInvestigatedbyCOElectrosorptionDensityFunctionalStudyofPt3andPd3.J.Phys.Chem.C2012,116,onPtsML/Pd(100).J.Am.Chem.Soc.2017,139,13676−13679.10057−10063.(35)Santana,J.A.;Krüger,S.;Rösch,N.MonolayerNanoislandsofPt(56)Monkhorst,H.J.;Pack,J.D.SpecialPointsforBrillouin-ZoneonAuandCu:AFirst-PrinciplesComputationalStudy.J.Phys.Chem.CIntegrations.Phys.Rev.B1976,13,5188−5192.2014,118,22102−22110.(57)Skulason,E.;Karlberg,G.S.;Rossmeisl,J.;Bligaard,T.;Greeley,́(36)Pfisterer,J.H.K.;Liang,Y.;Schneider,O.;Bandarenka,A.S.J.;Jónsson,H.;Nørskov,J.K.DensityFunctionalTheoryCalculationsDirectInstrumentalIdentificationofCatalyticallyActiveSurfaceSites.fortheHydrogenEvolutionReactioninanElectrochemicalDoubleLayeronthePt(111)Electrode.Phys.Chem.Chem.Phys.2007,9,3241.Nature2017,549,74−77.(58)Deshpande,S.;Maxson,T.;Greeley,J.GraphTheoryApproach(37)Santos,E.;Hindelang,P.;Quaino,P.;Schulz,E.N.;Soldano,G.;toDetermineConfigurationsofMultidentateandHighCoverageSchmickler,W.HydrogenElectrocatalysisonSingleCrystalsandonAdsorbatesforHeterogeneousCatalysis.NpjComput.Mater.2020,6,NanostructuredElectrodes.ChemPhysChem2011,12,2274−2279.79.(38)Andersin,J.;Honkala,K.FirstPrinciplesInvestigationsofPd-on-(59)Boes,J.R.;Mamun,O.;Winther,K.;Bligaard,T.GraphTheoryAuNanostructuresforTrichloroetheneCatalyticRemovalfromApproachtoHigh-ThroughputSurfaceAdsorptionStructureGen-Groundwater.Phys.Chem.Chem.Phys.2011,13,1386.eration.J.Phys.Chem.A2019,123,2281−2285.(39)Yang,F.;Zhang,Q.;Liu,Y.;Chen,S.ATheoretical(60)SchlexerLamoureux,P.;Winther,K.T.;GarridoTorres,J.A.;ConsiderationontheSurfaceStructureandNanoparticleSizeEffectsStreibel,V.;Zhao,M.;Bajdich,M.;Abild-Pedersen,F.;Bligaard,T.ofPtinHydrogenElectrocatalysis.J.Phys.Chem.C2011,115,19311−MachineLearningforComputationalHeterogeneousCatalysis.19319.ChemCatChem2019,11,3581−3601.(40)Lindgren,P.;Kastlunger,G.;Peterson,A.A.AChallengetotheG(61)Wang,X.;Ye,S.;Hu,W.;Sharman,E.;Liu,R.;Liu,Y.;Luo,Y.;∼0InterpretationofHydrogenEvolution.ACSCatal.2020,10,121−Jiang,J.ElectricDipoleDescriptorforMachineLearningPredictionof128.CatalystSurface-MolecularAdsorbateInteractions.J.Am.Chem.Soc.(41)Tang,M.T.;Liu,X.;Ji,Y.;Norskov,J.K.;Chan,K.Modeling2020,142,7737−7743.HydrogenEvolutionReactionKineticsthroughExplicitWater-Metal(62)Seifert,G.;Fritsche,H.-G.;Ziesche,P.;Heera,V.OntheInterfaces.J.Phys.Chem.C2020,124,28083−28092.ElectronicStructureofPalladiumHydrogenandPlatinumHydro-(42)Greeley,J.;Nørskov,J.K.;Kibler,L.A.;El-Aziz,A.M.;Kolb,D.genSystems.Phys.StatusSolidiB1984,121,705−715.M.HydrogenEvolutionOverBimetallicSystems:Understandingthe(63)Balasubramanian,K.;Feng,P.Y.;Liao,M.Z.RelativisticTrends.ChemPhysChem2006,7,1032−1035.CalculationsofElectronicStatesofPdH.J.Chem.Phys.1987,87,(43)Nørskov,J.K.;Bligaard,T.;Logadottir,A.;Kitchin,J.R.;Chen,J.3981−3985.G.;Pandelov,S.;Stimming,U.TrendsintheExchangeCurrentfor(64)Roudgar,A.;Groß,A.LocalReactivityofThinPdOverlayersonHydrogenEvolution.J.Electrochem.Soc.2005,152,J23−J26.AuSingleCrystals.J.Electroanal.Chem.2003,548,121−130.(44)Strmcnik,D.S.;Rebec,P.;Gaberscek,M.;Tripkovic,D.;(65)Chen,L.;Zhou,C.;Wu,J.;Cheng,H.HydrogenAdsorptionandStamenkovic,V.;Lucas,C.;Markovic,N.M.RelationshipbetweenthéDesorptiononthePtandPdSubnanoClustersaReview.Front.SurfaceCoverageofSpectatorSpeciesandtheRateofElectrocatalyticPhys.China2009,4,356−366.(66)Zhou,C.;Yao,S.;Wu,J.;Chen,L.;Forrey,R.R.;Cheng,H.Reactions.J.Phys.Chem.C2007,111,18672−18678.SequentialH2ChemisorptionandHDesorptiononIcosahedralPt13(45)Strmcnik,D.;Tripkovic,D.;vanderVliet,D.;Stamenkovic,V.;andPd13Clusters:ADensityFunctionalTheoryStudy.J.Comput.Markovic,N.M.AdsorptionofHydrogenonPt(111)andPt(100)́Theor.Nanosci.2009,6,1320−1327.SurfacesandItsRoleintheHOR.Electrochem.Commun.2008,10,(67)Baca,M.;Cendrowski,K.;Kukulka,W.;Bazarko,G.;Moszynski,́1602−1605.D.;Michalkiewicz,B.;Kalenczuk,R.J.;Zielinska,B.AComparisonof(46)Skulason,E.;Tripkovic,V.;Björketun,M.E.;Gudmundsdóttir,́HydrogenStorageinPt,PdandPt/PdAlloysLoadedDisorderedS.;Karlberg,G.;Rossmeisl,J.;Bligaard,T.;Jónsson,H.;Nørskov,J.K.MesoporousHollowCarbonSpheres.Nanomaterials2018,8,639.ModelingtheElectrochemicalHydrogenOxidationandEvolution(68)Bader,R.F.W.AtomsinMolecules:AQuantumTheory,1stReactionsontheBasisofDensityFunctionalTheoryCalculations.J.Paperbacked.;ClarendonPress:OxfordEngland,NewYork,1990;Phys.Chem.C2010,114,18182−18197.Vol.22.(47)Skulason,E.;Faraj,A.A.;Kristinsdóttir,L.;Hussain,J.;Garden,́(69)Henkelman,G.;Arnaldsson,A.;Jónsson,H.AFastandRobustA.L.;Jónsson,H.CatalyticActivityofPtNano-ParticlesforH2AlgorithmforBaderDecompositionofChargeDensity.Comput.Mater.Formation.Top.Catal.2014,57,273−281.Sci.2006,36,354−360.(48)Santana,J.A.;Saavedra-Arias,J.J.;Ishikawa,Y.Electrochemical(70)Exner,K.S.DoesaThermoneutralElectrocatalystCorrespondHydrogenOxidationonPt(100):ACombinedDirectMoleculartotheApexofaVolcanoPlotforaSimpleTwo-ElectronProcess?Dynamics/DensityFunctionalTheoryStudy.Electrocatalysis2015,6,Angew.Chem.,Int.Ed.2020,59,10236−10240.534−543.(71)Schnur,S.;Groß,A.ChallengesintheFirst-Principles(49)Kresse,G.;Hafner,J.AbInitioMolecularDynamicsforLiquidDescriptionofReactionsinElectrocatalysis.Catal.Today2011,165,Metals.Phys.Rev.B:Condens.MatterMater.Phys.1993,47,558−561.129−137.(50)Kresse,G.;Hafner,J.AbInitioMolecular-DynamicsSimulation(72)Garcia-Araez,N.EnthalpicandEntropicEffectsonHydrogenoftheLiquid-Metal-Amorphous-SemiconductorTransitioninGerma-andOHAdsorptiononPt(111),Pt(100),andPt(110)ElectrodesAsnium.Phys.Rev.B:Condens.MatterMater.Phys.1994,49,14251−EvaluatedbyGibbsThermodynamics.J.Phys.Chem.C2011,115,14269.501−510.(51)Kresse,G.;Furthmüller,J.EfficientIterativeSchemesforAb(73)Baber,A.E.;Tierney,H.L.;Lawton,T.J.;Sykes,E.C.H.AnInitioTotal-EnergyCalculationsUsingaPlane-WaveBasisSet.Phys.Atomic-ScaleViewofPalladiumAlloysandTheirAbilitytoDissociateMolecularHydrogen.ChemCatChem2011,3,607−614.Rev.B:Condens.MatterMater.Phys.1996,54,11169−11186.(52)Perdew,J.P.;Burke,K.;Ernzerhof,M.GeneralizedGradientApproximationMadeSimple.Phys.Rev.Lett.1996,77,3865−3868.(53)Blöchl,P.E.ProjectorAugmented-WaveMethod.Phys.Rev.B:Condens.MatterMater.Phys.1994,50,17953.(54)Kresse,G.;Joubert,D.FromUltrasoftPseudopotentialstotheProjectorAugmented-WaveMethod.Phys.Rev.B:Condens.MatterMater.Phys.1999,59,1758−1775.5115https://dx.doi.org/10.1021/acs.jpcc.0c11566J.Phys.Chem.C2021,125,5110−5115
此文档下载收益归作者所有