《Igor Ying Zhang and Xin Xu - Zhang, Xu - 2021 - Unknown》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
pubs.acs.org/JPCLLetterExploringtheLimitsoftheXYG3-TypeDoublyHybridApproximationsfortheMain-GroupChemistry:ThexDH@B3LYPModelIgorYingZhang*andXinXu*CiteThis:J.Phys.Chem.Lett.2021,12,2638−2644ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Despitebeingthemostaccurateclassofdensityfunctionalapproximationsforthemain-groupchemistry,doublyhybridapproximations(DHAs)aregenerallyconsideredtobeincompleteindescribingthemedium-tolong-rangedispersiveinteractions.TheexistingDHAsareoftensupplementedwithempiricallong-rangedispersioncorrections.ByusingtheextensiveandchemicallydiverseGMTKN55database,weexplorethelimitsoftheXYG3-typeDHAsusingtheB3LYPreferenceorbitals,namely,xDH@B3LYP,withagraduallyrelaxedconstraintonthemixingparametersofDHAs.OurresultsdemonstratethatthexDH@B3LYPmodelcanprovideabalanceddescriptionofbothcovalentandnoncovalentinteractionswiththeaccuracyandrobustnesscomparabletoorevenbetterthantheveryexpensivecompositemethodsinwavefunctiontheory.Suchanaccuracycanbeachievedwithoutresortingtotheuseofanylong-rangecorrectionscheme,sheddingnewlightonthedevelopmentofDHAs.ThepasttwodecadeshaveseenincreasinglyrapidadvancesplayersbasedonachemicallydiverseMain-GroupChemistryinthedevelopmentofthegeneralizedKohn−ShamDatabasewithabout5000testcasesorganizedin84subsetsdensityfunctionaltheory(KS-DFT)methods.Amongthem,a(MGCDB84).Notethatthetopplayerinthisbenchmarkistherepresentativeprogressonthetop(fifth)rungofJacob’sLadderxDHofωB97M(2)whichcontains14empiricalparameters1determinedbyoptimizingtheperformancefortheMGCDB84ofKS-DFTistheinventionoftheso-calleddoublyhybrid2−19set.approximations(DHAs)inquantumchemistry.Despiteall26sharingthefeatureofusingthesecond-orderperturbativetermTheGMTKN55setoftheGrimmegroupisanotherlarge(PT2)tointroducetheunoccupiedorbitals,themainstreamdatabaseforthemain-groupchemistry.Itisacompositeof55DownloadedviaUNIVOFNEWMEXICOonMay15,2021at21:02:59(UTC).DHAscanbefurtherclassifiedaccordingtothemannerofsubsets(1505relativeenergiesintotal),representingthepreparingthedensityandorbitalsforthefinaltotal-energyGeneralMain-groupThermochemistry,Kinetics,andNon-evaluation.XYG3proposedbytheXugroupin20096definesacovalentinteractions.ItisrecommendedtouseGMTKN55forSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.familyofDHAs(xDH),20whichinsistsonmakinguseofthethefunctionaldevelopmentandbenchmarktogetherwiththeself-consistentfield(SCF)orbitalsfromaconventionallower-so-calledsecondversionoftheweightedtotalmeanabsoluterungdensityfunctionalapproximation(DFA)foragooddeviation(WTMAD2)density,whileconstructinganotherhigher-rungfunctionalfor655−1thefinalenergy.Forinstance,XYG3,itslong-range-corrected156.84kcalmol(lrc)variantlrc-XYG3,14anditsopposite-spinPT2(osPT2)WTMAD2=55∑NiMADi10∑iNii|Δ|Ei(1)variantXYGJ-OShaveallbeenestablishedbasedonthe21−24B3LYPdensityandorbitals.ThelatestxDHsinclude17where|Δ|EiistheaveragedabsoluterelativeenergyofsubsetiωB97M(2)proposedbytheHead-Gordongroupand18withthenumberofrelativeenergiesbeingNi,while56.84kcal/xrevDSD-PBEP86-D4bytheMartingroup.XYG3andXYGJ-OScontain3and4empiricalparameters,respectively.Despiteonlytheheatsofformation(HOFs)of223Received:February1,2021smallmolecules25beingusedtodeterminetheparameters,Accepted:March4,2021XYG3andXYGJ-OShavebeendemonstratedtobecompetentPublished:March10,2021forvariouskindsofchemicalinteractionsofthemain-groupchemistry.InaveryrecentcomprehensivebenchmarkbytheHead-Gordengroup,XYG3andXYGJ-OSareboththetop-10©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c003602638J.Phys.Chem.Lett.2021,12,2638−2644
1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTable1.EmpiricalParametersforthexDH@B3LYPFunctionals,TheirWTMAD2ValuesontheGMTKN55Benchmark,and28TheirMADValuesfor142CalculatedBondDissociationEnergiesofSmallMolecules(BDE142)(inkcal/mol)aparametersxDH@B3LYPa1a2a3a4a5a6a7a8a9WTMAD2BDE142XYG30.8033[−0.0140]0.2107[0.0000][0.6789]0.3211[0.3211]−−3.742.10lrc-XYG30.8033[−0.0140]0.2107[0.0000][0.6789]0.3211[0.3211][0.4822][0.4822]3.031.84XYGJ-OS0.7731[0.2269][0.0000]0.23090.27540.4364[0.0000]−−4.010.86lrc-XYGJ-OS0.7731[0.2269][0.0000]0.23090.27540.4364[0.0000]1.0300[0.0000]3.010.89revXYGJ-OS0.8877[0.1123][0.0000]−0.06970.61670.5485[0.0000]−−3.022.20XYG-OS50.8928[0.3393]−0.23210.3268−0.06350.5574[0.0000]−−2.661.56revXYG30.9196[−0.0222]0.1026[0.0000][0.6059]0.3941[0.3941]−−2.471.34XYG50.9150[0.0612]0.0238[0.0000]0.49570.45480.2764−−2.321.13XYG60.9105[0.1576]−0.06810.18000.22440.46950.2426−−2.241.09XYG70.89710.2055−0.14080.40560.11590.40520.2589−−2.051.03aDetaileddescriptionoftheparametersandtheassociatedDFTcomponentsareprovidedineqs2and3andtherelevantparagraphs.Tobespecific,inthe(lrc-)xDH@B3LYPmethods,{a,a,a}aretheparametersfortheexchangecomponentsof{EHF,ES,EB88},respectively,and{a,123xxx4a}forthe(semi)-localcorrelationcomponentsof{EVWN,ELYP}.{a,a}aretheparametersfortheOSandSSpartsofthePT2correlation{EosPT2,5cc67cEssPT2},while{a,a}areforthecorrespondinglong-rangecontributions{Eos‑lrPT2,Ess‑lrPT2}.Parameterswithsquareblacketsaretheconstrainedc89ccparameters,determinedbytheconstraintsofCnwithn=1−9.molistheaverageofall55{|Δ|}Ei.MADireferstothemeanorbital(NAO)basissetwithvalencecorrelationconsistencyinabsolutedeviationofsubseti.GMTKN55withWTMAD2thequadruple-ζquality(NAO-VCC-4Z)fortheelementsfrom1HtoAr30andtheGaussian-typebasissetofcc-pwCVQZfornumericallyvalidatestheconceptofJacob’sLadderofKS-DFT31thatahigher-rungDFAcanbemoreaccuratethanalower-rungheavierelements,whicharetabulatedwithatighternumericalDFA.Thereisnoreporttodateontheperformanceof(lrc-integrationsettinginFHI-aims.ForthesubsetsofWATER27,)XYG3andXYGJ-OSfortheGMTKN55database.However,aRG18,IL16,G21EA,andAHB21,theaforementionedbasissets31,32recentbenchmarksuggeststhatthexDHmethodofωB97M(2),areaugmentedwithdiffusefunctionsfromaug-cc-pVQZ.thetopplayerfortheMGCDB84database,isalsothewinnerforThefrozen-coreapproximationisadoptedforthePT2GMTKN55(WTMAD2=2.19kcal/mol).18ThexrevDSD-evaluationswithonlyvalenceelectronscorrelatedformostofPBEP86-D4methodhas6empiricalparameters,whichweretheelements.TheelectronsonthesecondvalenceshellareoptimizeddirectlyagainstthefullGMTKN55database,yieldinginvolvedonlyforthealkali(-earth)elements.Notethatthe18,26aWTMAD2of2.23kcal/mol.18ThesetwoxDHmethodspreviousGMTKN55benchmarksusethedef2-QZVPPbaisrepresentthetop-levelaccuracyofKS-DFTcurrentlyavailablesetwithasimilarchoiceofaugmenteddiffusebasisfunctionsandforthemain-groupchemistry,27whicharecomparabletothefrozen-coreapproximationsforspecificelementsandsubsets.muchmoreexpensivecompositemethodsinwavefunctionTheoveralldifferenceassociatedwiththeabovenumericaltheory(WFT),likeCBS-QB3(2.25kcal/mol),G4MP2(2.29settinghasledtoadeviationofWTMAD2around0.05kcal/molfortheB3LYPmethod,althoughthedifferenceforaspecifickcal/mol),andG3B3(2.20kcal/mol).TheWTMAD2valuesofsubsetcouldbeslightlyhigherasshowninTable2.theWFTmethodswereobtainedwithareducedsetof642Tobetterstudytheefficacyoftheparametrizationinthereactionenergies,forwhichthecomputationalcostswere27xDH@B3LYPmodel,wecollectthem,includingXYG3andaffordable.XYGJ-OS,inthefollowinggeneralformfortheexchange-Inthisletter,webenchmarktheaccuracyofXYG3andXYGJ-correlationenergyOSforthemain-groupchemistryusingtheGMTKN55database.Afterward,reparametrizationundertheoriginalxDH@B3LYPHFSB88VWNformulas(yieldingrevXYG3andrevXYGJ-OS)iscarriedoutEaxc=+++1Exa2Exa3Exa4EcbydirectlyminimizingtheWTMAD2ofthefullGMTKN55+++aELYPaEosPT2aEssPT25ccc67(2)database.WethenexplorethelimitsofthexDHmethodsusingB3LYPdensityandorbitals(xDH@B3LYP)bygraduallywhereEHFisthecontributionfromtheHartree−Fock(HF)-likexrelaxingtheconstraintsintheoriginalformula.ThenewxDHexactexchange,whileESandEB88aretheexchangecontributionsxxmethodsincludeXYG5,XYG-OS5,XYG6,andXYG7withthefromtheSlater-typelocaldensityapproximation(LDA)33andlastcharacterbeingthenumberoftheempiricalparameters.The21theBecke88generalizedgradientapproximation(GGA),optimizedparametersofthesemethodsarelistedinTable1.VWN34respectively.EcisthelocalVosko−Wilk−Nusaircorrela-OurresultsconfirmthattheoriginalXYG3andXYGJ-OSaretion.Forconsistency,thexDH@B3LYPmodelutilizesthesamecapableofdeliveringasatisfactorydescriptionofthe24VWNversionadoptedintheoriginalB3LYPimplementation.GMTKN55benchmark,whilereparametrizationwithanELYPistheLee−Yang−Parr22correlationapproximation.EosPT2ccincreasingnumberofparametersactuallyimprovestheirgeneralisthefifth-rungcorrelationcontributionintheformofopposite-performances.Surprisingly,suchanaccuracycanbeachievedspinPT2(osPT2),andEssPT2denotesthesame-spinpartofPT2cwithoutresortingtotheuseofempiricaldispersionsorlong-(ssPT2).rangePT2corrections.Thegeneralformula(eq2)ofthexDH@B3LYPmodelhas7CalculationsareallperformedusingtheFritz−Haberempiricalparametersintotal.XYG3imposes4constraintsastheInstituteabinitiomolecularsimulations(FHI-aims)packagefollowing,suchthatonly3parametersremain,29inthenumericalintegrationframework.FormostsystemsintheGMTKN55database,weusethenumericalatomic-centera123++=aa1.0(C1)2639https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterTable2.WTMAD2ValuesofDifferentDFAs(inkcal/mol)associatedwiththebasicpropertiesofthereactionsofsmallfortheFullGMTKN55Benchmark(All),BasicPropertiessystems(Sub1with18subsets),isomerizationandreactionsofandReactionsofSmallSystems(Sub1),Isomerizationsandlargesystems(Sub2with9subsets),barrierheights(Sub3,7ReactionsofLargeSystems(Sub2),BarrierHeights(Sub3),subsets),andintermolecular(Sub4,12subsets)andintra-IntermolecularNoncovalentInteractions(Sub4),andmolecular(Sub5,9subsets)noncovalentinteractions(pleasearefertotheSIformoredetailedMADsofthe55subsets).InlineIntramolecularNoncovalentInteractions(Sub5)17,30,37,38withpreviousstudies,theGMTKN55benchmarkallSub1Sub2Sub3Sub4Sub5confirmsthatXYG3andXYGJ-OSarequiteaccuratefortheB3LYP16.235.2617.539.1928.2325.14main-groupchemistrybutstillhaveroomforfurtherimprove-bB3LYP16.185.1017.269.0428.5725.11mentforsystemsinvolvingthenoncovalentinteractions(e.g.,XYG33.751.724.692.236.044.88Sub2,Sub4,andSub5).AsshowninTable2,XYG3andXYGJ-lrc-XYG33.031.644.152.434.912.78OSarecomparabletothebestexistingDFA,ωB97M(2)forXYGJ-OS4.041.854.422.946.015.97smallsystems(Sub1),andbarrierheights(Sub3).Buttheirlrc-XYGJ-OS3.011.793.812.624.732.80WTMAD2valuesforSub4andSub5aretwotothreetimesrevXYGJ-OS3.022.343.563.094.122.46largerthanthoseofωB97M(2).XYG-OS52.661.893.413.263.202.35ItisnowwidelyacceptedthatthedoublyhybridschemeitselfrevXYG32.471.592.862.743.302.56cannotfullycoverthemedium-tolong-rangecorrelationforXYG52.321.552.592.513.152.33noncovalentinteractions.Hencethelong-rangecorrectionXYG62.241.472.512.612.892.31strategies,suchastheD3dispersionusedinB2PLYP-D3andXYG72.051.312.432.302.782.00DSD-BLYP-D3(thesuffix“D3”istheabbrevationof“D3(BJ)”bB2PLYP-D33.932.516.284.903.783.78forsimplicitythroughoutthepaper),theD4dispersioninbDSD-BLYP-D33.081.884.323.043.923.15xrevDSD-PBEB86-D4,andthenonlocalVV10dispersioncωB97M(2)2.191.412.581.992.452.99employedinωB97M(2),areoftennecessarytoassistthedxrevDSD2.231.803.032.112.332.23DHAstowardabalanceddescriptionofcovalentandnon-aThebesttwoDFAswiththesmallestWTMAD2valuesforthecovalentinteractions.In2013,weproposedadispersionbwholesetandeachsubsetaremarkedinbold.Resultsfromref26correctionschemebasedonthelong-rangepartofPT2c14usingthebasissetofdef2-QZVPP.Resultsfromref18usingthe(lrPT2)tobetteraccountfortheorbitaldependence,indbasissetofdef2-QZVPP.AcronymofxrevDSD-PBEB86-D4;resultsparticular,ofthemedium-rangecorrelation.Forthesakeoffromref18aswell.consistency,werecastthelong-rangecorrectedXYG3(lrc-XYG3)inagenerallrc-xDH@B3LYPformulaasa4=0.0(C2)lrcxDH@B3LYP‐‐xDH@B3LYPoslrPT2sslrPT2‐a56+=a1.0(C3)EEaxc=++xc8Eca9Ec(3)a67=a(C4)os‑lrPT2ss‑lrPT2osPT2ssPT2Ec(orEc)sharesthesameformulaasEc(orEc)Thefirstandthirdconstraints(C1andC3)arethebutdecoratestheelectron−electronrepulsiveoperatorbyanormalizationconditionsfortheexchangeandthecorrelationGausserrorfunction,v̂lr=erf(ωr)/r,wheretheparameterωee1212contributions,respectively.Thesecondconstraint(C2)determinesthedistanceatwhichtheasymptoticlimitv̂lr→v̂=eeeeexcludestheuseofEVWNfortheparametrization,andthefourth1/risreached.Intheoriginalpaper,14ω=0.2Bohr−1wasc12constraint(C4)indicatesthatthePT2correlationEPT2=EosPT2ccadoptedasbeingappropriateaccordingtoref3,whichisalso+EssPT2isconsideredasaunitfortheparametrization.cusedinthisstudyforalllrc-xDH@B3LYPmethods.Similarly,eq2reducestotheXYGJ-OSformulawith4lrc-XYG3doesnotintroduceamoreempiricalparameterbutparametersbyintroducing3constraintsasinsteadhasanextraconstraint(C8),a12+=a1.0(C5)a8916==−aaa(C8)a3=0.0(C6)whichregulatesthePT2correlationtohavethesameamountoftheHFexchangeinthelong-range,whileretainingalltheothera7=0.0(C7)parametersasintheoriginalXYG3fittedonlyagainsttheHOFsofsomesmallmoleculesintheG3set.ThepresentstudyXYGJ-OSalsonormalizestheexchangeenergiesviathefifthB88confirmsthatthelong-rangecorrectionnotablyimprovestheconstraint(C5),butexcludestheuseofExfortheperformanceofXYG3,reducingtheWTMAD2from3.75toparametrization(thesixthconstraint,C6).Theseventh3.02kcal/mol,whichisnowcomparabletotheperformanceofconstraint(C7)wasoriginallyintroducedtoavoidthetheDSD-BLYP-D3method(WTMAD2=3.08kcal/mol),theevaluationofthessPT2contribution,suchthatthecomputa-5bestDFAoutof217candidatesintheoriginalGMTKN55tionalscalingcanbereducedfromtheorderofN(Nmeasuring264benchmarkwork.Wethenproposeinthisletteralong-rangethesystemsize)toNifusingtheresolution-of-identity35,36correctionforXYGJ-OSusingasimilarstrategyastoconstructexpansionswiththeLaplacequadratureapproximations,lrc-XYG3butwithonlytheos-lrPT2contribution:whichcanbefurtherreducedtoaquasi-linearscalingwiththe10VWNaidofalocalimplementationofosPT2.Inconsequence,Eca9=0.0(C9)withparametera4isreintroducedtocompensatethemissingssPT2contribution.andanextraparameterofa8=1.0300.Akintothelrc-XYG3Inadditiontotheempiricalparametersandtheconstraintsofperformance,lrc-XYGJ-OSyieldsanimprovedWTMAD2ofXYG3andXYGJ-OS,Table1liststheirWTMAD2valuesforthe3.01kcal/molwithasimilaraccuracyoflrc-XYG3andDSD-GMTKN55benchmark,whileTable2providesthebreakdownBLYP-D3.CloserinspectionofTable2showsthatsuchan2640https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure1.Normalizedmeanabsolutedeviation(NMAD,unitof%)asthepercentageofaDFA’sMADagainsttheaveragedabsoluterelativeenergy|ΔE|for55subsetsintheGMTKN55database.ResultsofrevXYG3,XYG6,andXYG7arecomputedinthepresentwork,whilethoseofDSD-BLYP-18,26D3,ωB97M(2),andxrevDSD-PBEB86-D4areobtainedfromthepreviousliterature.improvementischieflyassociatedwithabetterdescriptionofemployinganyspecifictreatmentofthelong-rangecorrelationsnoncovalentinteractions.fornonbondedinteractions.Suchapositiveroleplayedbythelong-rangecorrectionLetusnowturntothesubstitutabilityofthessPT2correlationdemonstratesthatthechiefflawofXYG3andXYGJ-OSfortheinxDH@B3LYP.ItisanattractivetopicforanyPT2-basedgeneralmain-groupchemistryindeedoriginatesfromtheDHAs,sincealower-scalingimplementationisavailableifonly10,35,36deficiencyindescribingthenoncovalentinteractions.However,theosPT2correlationisconsidered.TheXYG-OS5suchanobservationitselfmaynotbeadirectsupportofthemethodisestablishedbyimposingonly2constraintsofC1andaforementionedconsensus:thedoublyhybridschemeitselfcannotC7tothegeneralxDH@B3LYPformula(eq2).BothXYG5andfullycoverthemedium-tolong-rangecorrelationfornoncovalentXYG-OS5contain5parameters.Table1showsthattheonlyinteractions.differenceisthatthesame-spincorrelationisexclusivelyconsideredbyEssPT2inXYG5,whichissubstitutedbytheGiventhefactthattheparametrizationoftheoriginalXYG3cLDAcorrelationofEVWNinXYG-OS5.Table2suggeststhatandXYGJ-OSemployedonlytheHOFsofsomesmallcmoleculesintheG3setasthetrainingset,whichmayfavorsuchakindofsubstitutionsomewhatdowngradesthecovalentinteractions,whiledisfavoringnoncovalentinterac-performancequiteconsistently,leadingtoanoveralltions,weperformareparametrizationofXYG3andXYGJ-OSWTMAD2of2.32kcal/molfortheformerto2.66kcal/molagainstthefullGMTKN55database.AsshowninTable1,theforthelatterforthewholeGMTKN55benchmark.Nonethe-revisedXYGJ-OS(i.e.,revXYGJ-OS)improvestheaccuracyforless,suchasubstitutionisareasonablecompromiseintermsofthemain-groupchemistryovertheoriginalXYGJ-OSbyabout1efficiency.kcal/mol,descreasingWTMAD2to3.02kcal/mol.MoreThesmallestWTMAD2(2.05kcal/mol)givenbyXYG7issurprisingly,therevisedXYG3(i.e.,revXYG3)withonly3outstanding,althoughitdoesnotnecessarilyindicatethatXYG7parametersisfoundtodeliveranexcellentperformancefortheistheoverallwinnerforthemain-groupchemistry.Thedisparitymain-groupchemistry.TheWTMAD2ofrevXYG3isonly2.47oftheWTMAD2valuesislessthan0.2kcal/molamongXYG6,kcal/mol,approachingtothoseofthetop-classstate-of-the-artXYG7,ωB97M(2),andxrevDSD-PBEB86-D4,whichputtheseDHAs,suchasxrevDSD-PBEB86-D4with6parametersandDHAsasthetop-classperformers.Meanwhile,itisalwaysωB97M(2)with14parameters.worthwhiletounpacktheWTMAD2valuesandlookintotheirWethenexploretheperformanceofthexDH@B3LYPmodelperformanceforanindividualsubset,whichisimportanttoagainstthenumberofparameters.XYG5introduces2morejudgetheirrobustnessandtogivemorepreciseadvicetotheparametersbyremovingthenormalizationofthecorrelationuserswhomightbeinterestedinaspecificproblemcloselyenergies(C3)andgeneralizingthePT2modeltothespin-relatedtooneorseveralsubsetsinthebenchmark.Inthisregard,componentscaledPT2(scs-PT2)model(C4).39,40XYG6weprovidetheMADsofallDHAsinvestigatedforeachfurtherintroducestheLDAcorrelationofEVWN(C2)andXYG7individualsubsetintheSI,whileFigure1showsthenormalizedcultimatelyunlocksall7parametersinthemostgeneralform(eqMADi(NMADi)asthepercentageofMADiagainstthe2)ofthexDH@B3LYPmodel.Table1liststhecorrespondingaveragedabsoluterelativeenergy|Δ|EiforsixselectedDHAs.AsoptimizedparametersandtheirfinalWTMAD2valuesfortheillustratedinFigure1,allsixDHAsdeliverquiteasimilarwholeGMTKN55dataset.FromthedatainTable1,apositiveperformanceformostofthesubsetswiththerespectiveMADicorrelationisfoundbetweenthenumberofparametersandthebeingsmallerthan5%of|Δ|Ei.However,divergenceexistsinfinalperformance.StatisticsforthefivesubcategoriesinTable2severalspecificproblems.Forexample,theSIE4×4subsetdemonstratetheconspicuousimprovement,whichishighlycontains16dissociationenergiesoffourpositivelychargedconsistentnotonlyforthefullGMTKN55databasebutalsofordimersatfourdifferentpointsalongtheirdissociationpotentialdifferentkindsofchemicalinteractions.Thisfindingisclearlyenergycurves.Itisatypicaltestsetfortheself-interaction-errorcontrarytothegeneralopinionaforementioned,andweactually(SIE)problems,whereourxDH@B3LYPmodelexhibitsafindthatbothcovalentandnoncovalentinteractionsofsmallmuchbetterperformance.ItcanbeattributedtothelargeandlargesystemscanbeproperlyandverysatisfactorilyamountofEHFusedintheenergyfunctionalofxDH@B3LYP,xdescribedinthecontextofxDH@B3LYPwithoutresortingtowhichisanaturaloutcomeoftheparametrizationagainstthe2641https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterentireGMTKN55database.ThexDHschemeallowsforrandomnoisewithin±0.25(“random.uniform”)foreachdifferentamountsofEHFusedintheSCFfunctionalandtheparameter.Ourparametrizationprocedureensuresafullxenergyfunctional,offeringaneffectivewaytominimizetheoptimizationtofindtheglobalminimumandsolidifiesournotoriousSIE.Allinall,XYG7ishighlyrobustwithnosingleresultsandconclusionagainsttheoptimizationincompleteness.NMADibeinglargerthan15%.ThelargestNMADiofXYG7isThelatestxDHoftheHead-Gordongroup,ωB97M(2),1711.7%fortheTAUT15subset,whichhasasmall|Δ|EiofonlyemploysthedensityandorbitalsfromωB97M-V,whichisthe183.05kcal/mol,resultinginafairlysmallMADof0.36kcal/mol.bestexistinghybridDFAfortheGMTKN55benchmark.TheBesidestheGMTKN55database,wecalculate142bondPT2coefficientofωB97M(2)is0.34096,closetotheoptimizeddissociationenergies(BDE142)ofsmallmolecules,28asBDEisainXYG3andrevXYG3.Duetotheconstraintusedto6thecentralconceptinchemistry,whiletheBDE142setisnotnormalizethecoefficientsofthePT2correlationandtheVV10includedintheparametrizationofthexDH@B3LYPmethods.dispersion(seeeq8inref17),itbringsinalargeportion(aboutTable1showsthatthebestperformanceisgivenbyXYGJ-OS,65%)oftheVV10dispersiontotheωB97M(2)totalenergy.AsyieldinganMADofonly0.86kcal/mol.Reparametrizationofdiscussedintheoriginalpaper,theauthorsofωB97M(2)alsoXYGJ-OS(revXYGJ-OS)deterioratestheperformance,increas-triedtheoptimizationwithouttheaforementionedconstrainoningtheMADforBDE142to2.20kcal/mol.ThismaysuggestthePT2correlationandtheVV10dispersion,which,however,17thattheformulaforthefunctionalistooconstrained.Indeedtheproducesaworseperformance.Inprinciple,afulloptimizationaccuracyoftheosPT2-basedxDH@B3LYPmethodisimprovedwithmoreparametersshouldleadtoabetterperformance.Inwiththeincreasingnumberofparameters.HencetheMADoftheworstcase,asencounteredinouroptimizationofthelrc-XYG-OS5fortheBDE142setisaround1.56kcal/mol.WealsoxDH@B3LYPmethods,itatleastshouldproducethesameobserveapositivecorrelationbetweentheperformanceandtheperformanceofthepreviousoptimization,indicatingthenumberofparametersfromtheMADsofrevXYG3,XYG5,redundancyoftheextraparameters,likea8,a9inourXYG6,andXYG7downto1.0kcal/molfortheBDE142testset,optimizationforthelong-rangePT2contributions(seeeq3).arguablyreachingtheremaininguncertaintiesinthereferenceAccordingtothefindinginthiswork,weexpectthatasimilardata.Moreover,FiguresS1andS2intheSIsuggestthatourperformancecouldbeachievedbyabolishingtheconstraintandxDH@B3LYPmodelcanprovideasatisfactorydescriptioninevenremovingtheVV10dispersionfortheoptimizationofdescribingthewholeH+CH4→H2+CH3reactionpathandωB97M(2).theinteramolecularpotentialofthemethane−benzenecomplex,Insummary,acomprehensiveandsystematicstudybasedonbothofwhicharenotincludedintheparametrizationaswell.AlltheGMTKN55database,anextensiveandchemicallydiversetheseobservationsfurtherdemonstratethatthexDH@B3LYPdatabaseforthemain-groupchemistry,hasbeencarriedouttomodelisconvincinglyrobustforthegeneralmain-groupproposeandbenchmarkaserialoftheXYG3-typeDHAsthatchemistry.useB3LYPdensityandorbitals,namely,xDH@B3LYP.OurTofurtherstudythepossiblebenefitofthelong-rangeresultssuggestthatthexDH@B3LYPmodeliscapableofcorrections,weemploythegenerallrc-xDH@B3LYPformulaprovidingabalancedandhighlyaccuratedescriptionofboth(eq3)toreparametrizethelrcextensionofrevXYG3andXYGncovalentandnoncovalentinteractionsofsmallandlargewithn=5,6,7againstthefullGMTKN55database.Thesystems,whichoffertheoverallbestaccuracyforthegeneralparametrizationof(a8and/ora9)isaccompaniedbytheothermain-groupchemistry.Moreinterestingly,suchanaccuracyisparameterseitherlockedoroptimizedsimultaneously.Itisachievedwithoutresortingtotheuseofempiricaldispersionorsomewhatsurprisingthatnobenefitofusingspeciallong-rangelong-rangePT2corrections.correctionstopromotexDH@B3LYPcouldbeidentifiedinthisItisnowwellrecognizedthataDFAcontainstwosourcesof41,42analysis.Inparticular,thefullparametrizationof(a1,a3,a6)inerrors:oneisdensity-driven,andtheotherisenergy-driven.XYG3pluslrc(a8witha9=a8)leadstoasetofparametersthatInthexDHscheme,thetaskstoeliminatethesetwoerrorscanareidenticaltothoseofrevXYG3withanegligiblea8lessthanbepursuedseparatelyandsequentialybyoptimizingtheSCF0.005.Theoptimizeda8and/ora9forXYGnareintheorderoffunctionalandthentheenergyfunctionalseparately.Originally,0.01withatinyadjustmentofotherparametersinXYGn.TheweadoptedB3LYPastheSCFfunctionalforXYG3andXYGJ-resultinglrc-XYGnwithn=5,6,7yieldsalmostidenticalOS,astheB3LYPdensitieswerefoundtobesimilartothoseWTMAD2valuesasthestandardXYGnnotonlyforthefull43fromhigh-levelWFTforthemoleculesstudied.ItcouldbeGMTKN55setbutalsoforthefivesubcategories.Con-bettertousesomedifferentsetoforbitals,forexample,thePBE0sequently,wedonotreporttheselrcvariantsandtheirresults13referenceusedforxDH-PBE0,theωB97M-VreferenceforinTables1and2.Theredundancyofthelong-rangecorrections17ωB97M(2),andothers.NonlocalcorrelationotherthanthetothexDH@B3LYPmodelfurtherconfirmsthecapabilityofthePT2term,forexample,therandomphaseapproximationxDH@B3LYPframeworkitselftodeliverabalanceddescription(RPA),44−49canalsobeexploredasameanstoextendtheofbothcovalentandnoncovalentinteractionsofsmallandlargeapplicabilityofDHAsbeyondthemain-groupchemistry.systems.ThefactthatthexDH@B3LYPmodelusesthesameB3LYP■densityandorbitalsdramaticallyreducestheparametrizationASSOCIATEDCONTENTdifficulty,becausethetime-consumingSCFandpost-SCF*sıSupportingInformation(lr)PT2evaluationsarerequiredonlyonceinthepreparationofTheSupportingInformationisavailablefreeofchargeateachexchangeandcorrelationcomponentsineqs2and3,https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00360.deservestobementioned.OurhomemadepythonscriptingDetaileddescriptionofthetestset,computationaldetails,employsthedownhillsimplexalgorithm(“scipy.optimize.fmin”)calculationresultsofvariousDFAsforbothGMTKN55tosearchthelocalminimumforagiveninitialguess.ThelocalandBDE142datasets,variouspotentialenergycurvesforminimizationisrepeatedmorethan100timeswiththeinitialguessinheritedfromtheprevioussearchbutperturbedbyatheH+CH4→H2+CH3reaction,andthe2642https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterintermolecularpotentialsofvariousDFAsfortheKinetics,andNoncovalentInteractions.J.Chem.TheoryComput.2011,methane−benzenecomplex(PDF)7,291−309.(9)Sharkas,K.;Toulouse,J.;Savin,A.Double-hybriddensity-functionaltheorymaderigorous.J.Chem.Phys.2011,134,064113.■(10)Zhang,I.Y.;Xu,X.;Jung,Y.;Goddard,W.A.,IIIAfastdoublyAUTHORINFORMATIONhybriddensityfunctionalmethodclosetochemicalaccuracyusingaCorrespondingAuthorslocaloppositespinansatz.Proc.Natl.Acad.Sci.U.S.A.2011,108,IgorYingZhang−CollaborativeInnovationCenterof19896−19900.ChemistryforEnergyMaterials,ShanghaiKeyLaboratoryof(11)Brémond,E.;Adamo,C.Seekingforparameter-freedouble-MolecularCatalysisandInnovativeMaterials,MOEKeyhybridfunctionals:ThePBE0-DHmodel.J.Chem.Phys.2011,135,LaboratoryofComputationalPhysicalSciences,ShanghaiKey024106−024106−6.LaboratoryofBioactiveSmallMolecules,Departmentof(12)Kozuch,S.;Martin,J.M.L.DSD-PBEP86:insearchofthebestChemistry,FudanUniversity,Shanghai200433,People’sdouble-hybridDFTwithspin-componentscaledMP2anddispersionRepublicofChina;orcid.org/0000-0002-8703-1912;corrections.Phys.Chem.Chem.Phys.2011,13,20104−20107.Email:igor_zhangying@fudan.edu.cn(13)Zhang,I.Y.;Su,N.Q.;Brémond,É.A.G.;Adamo,C.;Xu,X.XinXu−CollaborativeInnovationCenterofChemistryforDoublyhybriddensityfunctionalxDH-PBE0fromaparameter-freeglobalhybridmodelPBE0.J.Chem.Phys.2012,136,174103−8.EnergyMaterials,ShanghaiKeyLaboratoryofMolecular(14)Zhang,I.Y.;Xu,X.ReachingaUniformAccuracyforComplexCatalysisandInnovativeMaterials,MOEKeyLaboratoryofMolecularSystems:Long-Range-CorrectedXYG3DoublyHybridComputationalPhysicalSciences,ShanghaiKeyLaboratoryofDensityFunctional.J.Phys.Chem.Lett.2013,4,1669−1675.BioactiveSmallMolecules,DepartmentofChemistry,Fudan(15)Brémond,É.;Sancho-García,J.C.;Pérez-Jiménez,Á.J.;Adamo,University,Shanghai200433,People’sRepublicofChina;C.Communication:Double-hybridfunctionalsfromadiabatic-orcid.org/0000-0002-5247-2937;Email:xxchem@connection:TheQIDHmodel.J.Chem.Phys.2014,141,031101.fudan.edu.cn(16)Hui,K.;Chai,J.-D.SCAN-basedhybridanddouble-hybriddensityfunctionalsfrommodelswithoutfittedparameters.J.Chem.Completecontactinformationisavailableat:Phys.2016,144,044114.https://pubs.acs.org/10.1021/acs.jpclett.1c00360(17)Mardirossian,N.;Head-Gordon,M.SurvivalofthemosttransferableatthetopofJacob’sladder:DefiningandtestingtheomegaNotesB97M(2)doublehybriddensityfunctional.J.Chem.Phys.2018,148,Theauthorsdeclarenocompetingfinancialinterest.241736.(18)Santra,G.;Sylvetsky,N.;Martin,J.M.L.MinimallyEmpirical■Double-HybridFunctionalsTrainedagainsttheGMTKN55Database:ACKNOWLEDGMENTSrevDSD-PBEP86-D4,revDOD-PBE-D4,andDOD-SCAN-D4.J.Phys.WethankLiChenforhelpwithretouchingthefigures.ThisChem.A2019,123,5129−5143.workwassupportedbytheNationalNaturalScience(19)Brémond,É.;Pérez-Jiménez,A.J.;Sancho-García,J.C.;Adamo,FoundationofChina(21688102,21973015),theScienceC.Range-separatedhybriddensityfunctionalsmadesimple.J.Chem.ChallengeProject(TZ2018004),InnovativeresearchteamofPhys.2019,150,201102.high-levellocaluniversitiesinShanghai,andakeylaboratory(20)Zhang,I.Y.;Xu,X.ANew-GenerationDensityFunctional-programoftheEducationCommissionofShanghaiMunicipal-TowardsChemicalAccuracyforChemistryofMainGroupElements;ity(ZDSYS14005).SpringerBriefsinMolecularScience;Springer-Verlag:2014.(21)Becke,A.D.Density-functionalexchange-energyapproximation■withcorrectasymptoticbehavior.Phys.Rev.A:At.,Mol.,Opt.Phys.REFERENCES1988,38,3098−3100.(1)Perdew,J.P.,Schmidt,K.DensityFunctionalTheoryandits(22)Lee,C.T.;Yang,W.T.;Parr,R.G.DevelopmentoftheApplicationtoMaterials;vandoren,V.,ed.;AmericanInstituteofcollesalvetticorrelation-energyformulaintoafunctionalofthePhysics:2000;Vol.577.electron-density.Phys.Rev.B:Condens.MatterMater.Phys.1988,37,(2)Grimme,S.Semiempiricalhybriddensityfunctionalwith785−789.perturbativesecond-ordercorrelation.J.Chem.Phys.2006,124,(23)Becke,A.D.Density-functionalthermochemistry3:Theroleof034108−16.exactexchange.J.Chem.Phys.1993,98,5648−5652.(3)Benighaus,T.;DiStasio,R.A.;Lochan,R.C.;Chai,J.D.;Head-(24)Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.Ab-Gordon,M.Semiempiricaldouble-hybriddensityfunctionalwithinitiocalculationofvibrationalabsorptionandcircular-dichroismimproveddescriptionoflong-rangecorrelation.J.Phys.Chem.A2008,spectrausingdensity-functionalforce-fields.J.Phys.Chem.1994,98,112,2702−2712.11623−11627.(4)Tarnopolsky,A.;Karton,A.;Sertchook,R.;Vuzman,D.;Martin,J.(25)Curtiss,L.A.;Raghavachari,K.;Redfern,P.C.;Pople,J.A.M.L.Double-hybridfunctionalsforthermochemicalkinetics.J.Phys.Chem.A2008,112,3−8.AssessmentofGaussian-3anddensityfunctionaltheoriesforalarger(5)Chai,J.D.;Head-Gordon,M.Long-rangecorrecteddouble-experimentaltestset.J.Chem.Phys.2000,112,7374−7383.hybriddensityfunctionals.J.Chem.Phys.2009,131,174105−13.(26)Goerigk,L.;Hansen,A.;Bauer,C.;Ehrlich,S.;Najibi,A.;(6)Zhang,Y.;Xu,X.;Goddard,W.A.,IIIDoublyhybriddensityGrimme,S.Alookatthedensityfunctionaltheoryzoowiththefunctionalforaccuratedescriptionsofnonbondinteractions,advancedGMTKN55databaseforgeneralmaingroupthermochem-thermochemistry,andthermochemicalkinetics.Proc.Natl.Acad.Sci.istry,kineticsandnoncovalentinteractions.Phys.Chem.Chem.Phys.U.S.A.2009,106,4963−4968.2017,19,32184−32215.(7)Kozuch,S.;Gruzman,D.;Martin,J.M.L.DSD-BLYP:AGeneral(27)Martin,J.M.L.;Santra,G.EmpiricalDouble-HybridDensityPurposeDoubleHybridDensityFunctionalIncludingSpinCompo-FunctionalTheory:A’ThirdWay’InBetweenWFTandDFT.Isr.J.nentScalingandDispersionCorrection.J.Phys.Chem.C2010,114,Chem.2020,60,787−804.20801−20808.(28)Wu,J.M.;Xu,X.ImprovingtheB3LYPbondenergiesbyusing(8)Goerigk,L.;Grimme,S.EfficientandAccurateDouble-Hybrid-theX1method.J.Chem.Phys.2008,129,164103−11.Meta-GGADensityFunctionalsEvaluationwiththeExtended(29)Blum,V.;Gehrke,R.;Hanke,F.;Havu,P.;Havu,V.;Ren,X.;GMTKN30DatabaseforGeneralMainGroupThermochemistry,Reuter,K.;Scheffler,M.Abinitiomolecularsimulationswithnumeric2643https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetteratom-centeredorbitals.Comput.Phys.Commun.2009,180,2175−2196.(30)Zhang,I.Y.;Ren,X.;Rinke,P.;Blum,V.;Scheffler,M.Numericatom-centered-orbitalbasissetswithvalence-correlationconsistencyfromHtoAr.NewJ.Phys.2013,15,123033.(31)Pritchard,B.P.;Altarawy,D.;Didier,B.;Gibson,T.D.;Windus,T.L.NewBasisSetExchange:AnOpen,Up-to-DateResourcefortheMolecularSciencesCommunity.J.Chem.Inf.Model.2019,59,4814−4820.(32)Dunning,T.H.J.Gaussianbasissetsforuseincorrelatedmolecularcalculations.I.Theatomsboronthroughneonandhydrogen.Chem.Phys.1989,90,1007−1023.(33)Dirac,P.a.M.NoteonexchangephenomenaintheThomasatom.Math.Proc.CambridgePhilos.Soc.1930,26,376−385.(34)Vosko,S.H.;Wilk,L.;Nusair,M.Accuratespin-dependentelectronliquidcorrelationendergiesforlocalspin-densitycalculations-acriticalanalysis.Can.J.Phys.1980,58,1200−1211.(35)Jung,Y.S.;Lochan,R.C.;Dutoi,A.D.;Head-Gordon,M.Scaledopposite-spinsecondorderMøller-Plessetcorrelationenergy:Aneconomicalelectronicstructuremethod.J.Chem.Phys.2004,121,9793−9802.(36)Jung,Y.;Shao,Y.;Head-Gordon,M.Fastevaluationofscaledoppositespinsecond-orderMøller-Plessetcorrelationenergiesusingauxiliarybasisexpansionsandexploitingsparsity.J.Comput.Chem.2007,28,1953−1964.(37)Takatani,T.;Hohenstein,E.G.;Malagoli,M.;Marshall,M.S.;Sherrill,C.D.BasissetconsistentrevisionoftheS22testsetofnoncovalentinteractionenergies.J.Chem.Phys.2010,132,144104−5.(38)Goerigk,L.;Grimme,S.Athoroughbenchmarkofdensityfunctionalmethodsforgeneralmaingroupthermochemistry,kinetics,andnoncovalentinteractions.Phys.Chem.Chem.Phys.2011,13,6670.(39)Grimme,S.Improvedsecond-orderMøller-Plessetperturbationtheorybyseparatescalingofparallel-andantiparallel-spinpaircorrelationenergies.J.Chem.Phys.2003,118,9095−9102.(40)Gerenkamp,M.;Grimme,S.Spin-componentscaledsecond-orderMøller-Plessetperturbationtheoryforthecalculationofmoleculargeometriesandharmonicvibrationalfrequencies.Chem.Phys.Lett.2004,392,229−235.(41)Kim,M.-C.;Sim,E.;Burke,K.UnderstandingandReducingErrorsinDensityFunctionalCalculations.Phys.Rev.Lett.2013,111,073003.(42)Vuckovic,S.;Song,S.;Kozlowski,J.;Sim,E.;Burke,K.DensityFunctionalAnalysis:TheTheoryofDensity-CorrectedDFT.J.Chem.TheoryComput.2019,15,6636−6646.(43)Cremer,D.Densityfunctionaltheory:coverageofdynamicandnon-dynamicelectroncorrelationeffects.Mol.Phys.2001,99,1899−1940.(44)Langreth,D.;Perdew,J.Theexchange-correlationenergyofametallicsurface.SolidStateCommun.1975,17,1425−1429.(45)Ren,X.;Rinke,P.;Joas,C.;Scheffler,M.Random-phaseapproximationanditsapplicationsincomputationalchemistryandmaterialsscience.J.Mater.Sci.2012,47,7447−7471.(46)Grimme,S.;Steinmetz,M.Acomputationallyefficientdoublehybriddensityfunctionalbasedontherandomphaseapproximation.Phys.Chem.Chem.Phys.2016,18,20926−20937.(47)Mezei,P.D.;Csonka,G.I.;Ruzsinszky,A.;Kállay,M.ConstructionofaSpin-ComponentScaledDual-HybridRandomPhaseApproximation.J.Chem.TheoryComput.2017,13,796−803.(48)Zhang,I.Y.;Xu,X.SimultaneousAttenuationofBothSelf-InteractionErrorandNondynamicCorrelationErrorinDensityFunctionalTheory:ASpin-PairDistinctiveAdiabatic-ConnectionApproximation.J.Phys.Chem.Lett.2019,10,2617−2623.(49)Zhang,I.Y.;Xu,X.OnthetoprungofJacobasladderofdensityfunctionaltheory:TowardresolvingthedilemmaofSIEandNCE.WileyInterdiscip.Rev.:Comput.Mol.Sci.2021,11,e1490.2644https://dx.doi.org/10.1021/acs.jpclett.1c00360J.Phys.Chem.Lett.2021,12,2638−2644
此文档下载收益归作者所有