资源描述:
《Diffusive Formation of Hollow Mesoporous Silica Shells from Core- Shell Composites Insights from the Hydrogen Sulfide Capture Cycle of》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
SupportingInformationforDiffusiveFormationofHollowMesoporousSilicaShellsfromCore-ShellComposites:InsightsfromtheHydrogenSulfideCaptureCycleofCuO@mSiO2NanoparticlesBaoyueFan,aWenyangZhao,aSupriyaGhosh,bK.AndreMkhoyan,bMichaelTsapatsis,c,*AndreasSteina,*aDepartmentofChemistry,UniversityofMinnesota,Minneapolis,MN55455,USAbDepartmentofChemicalEngineering&MaterialsScience,UniversityofMinnesota,Minneapolis,Minnesota55455,USAcDepartmentofChemicalandBiomolecularEngineering&InstituteforNanoBioTechnology,JohnsHopkinsUniversity,MD21218,USA*E-mail:tsapatsis@jhu.edu(M.T.)*E-mail:a-stein@umn.edu(A.S.)Numberofpages:11Numberoffigures:13S-1
1TableofContentsFigureS1.Experimentalset-upforthein-situsulfidationreaction.……………………….S-3FigureS2.IllustrationofextensivegraingrowthwhenaCuO-basedH2Ssorbentissulfidatedandregeneratedovermultiplecycles.................................................................S-4FigureS3.TEMimagesofCuO@mSiO2-N-calcined.……………………………………..S-5FigureS4.Distributionsofthethicknessofsilicashellsandofparticlewidths.…………..S-5FigureS5.XRDpatternofCuO@mSiO2-N.……………………………………………….S-6FigureS6.PowderXRDpatternsofCuO@mSiO2-Nbeforeandaftercalcinationinairat350˚CandofthesulfidedmaterialCuS@mSiO2-N.................................................S-7FigureS7.Distributionsofcorewidthsof(a)CuO@mSiO2-N-calcinedand(b)CuS@mSiO2-Nparticles.…………..................................................................................S-8FigureS8.(a)HAADF-STEMimageofCuO/HmSiO2-N2and(b)thecorrespondingSTEM-EDSelementalmapforsulfur............................................................S-8FigureS9.DistributionofthethicknessofsilicashellsofCuS@mSiO2-Dparticles.…….S-9FigureS10.FTIRspectrumofCuS@mSiO2-D.…………………………………………..S-9FigureS11.XRDpatternofCuS@mSiO2-D.……………………………………………..S-10FigureS12.(a)TEMimageand(b)SAEDpatternofanirregularly-shapedphaseobservedinthesampleCuS@mSiO2-D-350.………………………………………………S-11FigureS13.TEMimageofCuS@mSiO2-D-350.…………………………………………S-11S-2
2FigureS1.Experimentalset-upforthein-situsulfidationreaction.Theinneropenvialcontainedonlytheadsorbent.H2SO4solutionwascarefullypipettedintothecentrifugetube,butonlyontheoutsideoftheopenvial.(Caution:avoidsulfuricacidsolutionfromenteringintothevial,whichwoulddissolvetheadsorbentparticles.)S-3
3FigureS2.IllustrationofextensivegraingrowthwhenaCuO-basedH2Ssorbentissulfidatedandregeneratedovermultiplecycles.(a)TEMimageoftheas-synthesizedabsorbentwithanapproximatecompositionof50CuO·MgO·3.5Al2O3estimatedfromenergydispersiveX-rayspectroscopyandelectron-energy-lossspectra.(b)TEMimageofthissampleaftertensulfidationandregenerationcycles.SignificantgrowthofCuOgrainshasoccurred.(c)PowderXRDpatternsofthesesamples.TheestimatedCuOgrainsizeincreasedfrom15nmto90nmaftertensulfidation/regenerationcycles,estimatedonthebasisofScherrerlinebroadening.Thesamplewassynthesizedfroma50-mLmixturesolutioncontaining30mL1.25MCu(NO3)2,15mL1.25MMg(NO3)2and5mL1.25MAl(NO3)3.Themixedmetalnitratesolutionwasaddedtoapolypropylenebottlecontaining100mLdeionizedwaterheatedat70°Cinanoilbathatarateof5mL/minusingasyringeinfusionpump.ThepHoftheentirereactionmixturewasmaintainedat7bymanualin-situadditionof1.25MNa2CO3solution.Uponcompleteadditionofthemixedmetalnitratesolution,theoilbathtemperaturewasincreasedto80°Candkepttherefor1hunderstirringtoagethemixture.Theresultingprecipitatewasfilteredandwashedthreetimes,eachtimewith2-Ldeionizedwater.Thematerialwasdriedat70°Cfor12handthencalcinedat500°Cfor5hinairflowingatarateof~100mL/min.Theexperimentalset-upforsulfidation–regenerationstudieswasconstructedfromstainlesssteel316tubingandconnections.5.0mgofthesample(mesh40–80)wasdilutedwith100.0mgofquartz(mesh40–80)andsandwichedbetweenquartzwoolplugsinaU-shapedquartztubewith4mminnerdiameter.Sorbentwasactivatedin40mL/minN2flowat300°Cfor12handthenexposedtoH2Sstreamof40mL/min(100ppmvinN2)at150°Cand1atm.TheH2Sconcentrationatthereactorexitwasmonitoredusingagaschromatograph(Agilent7890A)equippedwithasulfurchemiluminescencedetector(SCD).Thesulfidatedsorbentwasregeneratedbyoxidationinthesamereactorat600°Cfor6hin5%O2(balancedwithN2)flowingatarateof40mL/min.ThereactorwasflushedwithN2foratleast15minbetweencyclesasasafetyprecaution.Thesulfidation–regenerationwascarriedoutfor10cyclestoobtainthe10thregeneratedsample.S-4
4FigureS3.TEMimagesofCuO@mSiO2-N-calcined.(a)and(b)showimagesatdifferentmagnifications.FigureS4.Distributionsofthethicknessofsilicashellsandofparticlewidthsof(a,b)CuO@mSiO2-N,(c,d)CuO@mSiO2-N-calcinedand(e,f)CuS@mSiO2-Nparticles.S-5
5FigureS5.XRDpatternofCuO@mSiO2-N.Theinsetisthelow-angleXRDpattern.(EnlargedversionofFigure1a.)S-6
6FigureS6.PowderXRDpatternsofCuO@mSiO2-Nbeforeandaftercalcinationinairat350˚CandofthesulfidedmaterialCuS@mSiO2-N.(EnlargedversionofFigure3a.)S-7
7FigureS7.Distributionsofcorewidthsof(a)CuO@mSiO2-N-calcinedand(b)CuS@mSiO2-Nparticles.FigureS8.(a)HAADF-STEMimageofCuO/HmSiO2-N2and(b)thecorrespondingSTEM-EDSelementalmapforsulfur.S-8
8FigureS9.DistributionofthethicknessofsilicashellsofCuS@mSiO2-Dparticles.FigureS10.FTIRspectrumofCuS@mSiO2-D.S-9
9FigureS11.XRDpatternofCuS@mSiO2-D.Theinsetisthelow-angleXRDpattern.(EnlargedversionofFigure6a.)S-10
10FigureS12.(a)TEMimageand(b)SAEDpatternofanirregularly-shapedphaseobservedinthesampleCuS@mSiO2-D-350.Reflectionsin(b)matchthoseofS8(PDF#00-053-1109).FigureS13.TEMimageofCuS@mSiO2-D-350.S-11