Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H

Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H

ID:81816470

大小:2.95 MB

页数:9页

时间:2023-07-20

上传者:U-14522
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第1页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第2页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第3页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第4页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第5页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第6页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第7页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第8页
Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H_第9页
资源描述:

《Condensation E ff ects on Electron Chiral Asymmetries in the Photoionization of Serine From Free Molecules to Nanoparticles ̌ - Nahon, H》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

pubs.acs.org/JPCLLetterCondensationEffectsonElectronChiralAsymmetriesinthePhotoionizationofSerine:FromFreeMoleculestoNanoparticlesSebastianHartweg,*GustavoA.Garcia,DusanK.Božanič,andLaurentNahońCiteThis:J.Phys.Chem.Lett.2021,12,2385−2393ReadOnlineACCESSMetrics&MoreArticleRecommendations*sıSupportingInformationABSTRACT:Structuralchangesatthemolecularlevel,occurringattheonsetofcondensation,canbeprobedbyangle-resolvedvalencephotoelectronspectroscopy,whichisinherentlysensitivetotheelectronicstructure.Forlargercondensedsystemslikeaerosolparticles,theobservationofintrinsicangularanisotropiesinphotoemission(βparameters)ischallengingduetothestrongreductionoftheirmagnitudebyelectrontransporteffects.Here,weusealesscommon,moresensitiveobservableintheformofthechiralasymmetryparametertoperformacomparativestudyoftheVUVphotoelectronspectroscopyandphotoelectroncirculardichroism(PECD)betweenpuregasphaseenantiomersoftheaminoacidserineandtheircorrespondinghomochiralnanoparticles.Weobservearelativelylarge(1%)andstronglykineticenergy-dependentasymmetry,discussedintermsoftheemergenceoflocalorderandconformationalchangespotentiallycounterbalancingthelossofangularinformationduetoelectrontransportscattering.ThisdemonstratesthepotentialofPECDasasensitiveprobeofthecondensationeffectsfromthegasphasetobulk-likechiralaerosolparticlessurpassingthepotentialofconventionalphotoemissionobservablessuchasβparameters.13AerosolphotoelectronspectroscopyisanimportanttoolcoreelectronsusingsoftX-rayradiation,wherehigh-energyforthestudyandcharacterizationoftheelectronicphotoelectronsoriginatingfroms-likecore−shellstypicallystructureofparticulatematter,elucidatingpropertiesspecificshowhighphotoemissionanisotropiesthatarestilldetectabletosubmicrometersizedparticles,oftengovernedbysurface13,20evenafterreductionduetoelectrontransportscattering.1−7effects.Furthermore,aerosolphotoelectronspectroscopyForvalenceelectrons,ontheotherhand,condensationeffectscanbeusedasanalternativeandoftenadvantageousapproachontheelectronicorbitalcharacterandtheshort-rangetoobtaininformationonsolidandliquidbulkproperties,suchpotentialwithwhichthephotoelectronsinteractduringthe8,910−12asbulkionizationenergies,solvationeffects,andphotoionizationprocessreducetheβparameterconsiderablyelectrontransportphenomena.13−1721eveninsmallclusterswithoutelectrontransportscattering.DownloadedviaUNIVOFNEWMEXICOonMay15,2021at21:04:28(UTC).Photoelectronangulardistributions(PADs)ofaerosolsInlargercondensedsystemslikelargeclusters,22−25aerosols,16obtainedfromUVandVUVphotoionizationareusuallyandliquidjets,26electrontransportscatteringeffectshaveagovernedbyparticle-specificasymmetries,createdbythestrongeffectontheβparameterswhicharethusfurtherSeehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.combinationoftheradiation’sfiniteabsorptionlength,lightreduced,becomingoftenvanishinganddifficulttodetect.Thisscattering,andlimitedescapedepthofphotoelectrons,referreddifficultyisfurtherincreasedbythestrongparticle-specific15,18toasshadowingornanofocusing.Theseparticle-sizeandasymmetriesmentionedabove.wavelength-dependentforward/backwardasymmetriesinAnotherkindofasymmetryinthePADs,observedforphotoemission,quantifiedbytheparameterrandomlyorientedfreechiraltargetsphotoionizedbycircularlyα=IIforward/backwarddefinedastheratioofthephotoemissionpolarizedlight(CPL),iscausedbytheso-calledphotoelectronintensitiesintheforwardandbackwarddirections,havebeencirculardichroism(PECD)effect.PECDisanintense(uptoaexploitedtogainadditionalinformationonabroadrangeof14−16,18fewtensofpercent)chiropticaleffectresultinginananoparticles.Intrinsicmolecularphotoemissionaniso-photoelectronforward/backwardasymmetryalongthelighttropiesduetoanonzeroβparameterdescribepreferentialphotoemissioninthedirectionsparallelorperpendiculartothelightpolarizationaxis,duetotheinterferencebetweenReceived:January25,2021outgoingphotoelectronpartialwaves.19Inthevalenceregion,Accepted:February23,2021suchanisotropiescould,ifdetectable,providevaluableinsightsPublished:March4,2021intoelectronicandstructuralpropertiesincomplexsampleenvironments.Sofar,sizableintrinsicphotoemissionaniso-tropiesforaerosolshaveonlybeenreportedfortheemissionof©2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.jpclett.1c002582385J.Phys.Chem.Lett.2021,12,2385−2393

1TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter59propagationdirectionthatchangesitssigniftheenantiomerhomochiralityoflife.ThedirectinvolvementofSer8oritshandednessorthelighthelicityisswapped(forreviewsseerefsprotonatedformSerH+asapromoterofchiralamplification827−29).PECDisknowntobeverysensitivetotheelectronic48hasbeendiscussedintheliterature.Insuchacontext,thestructure,i.e.,totheinitialorbitalfromwhichthephoto-studyofSerPECDisofspecialinterestsincethePECDofelectronoriginatesandtothewholemolecularpotentialfromaminoacidshasbeenproposedasaninitialsourceofwhichthedepartingelectronisscatteredoff,i.e.,tomolecularenantiomericexcessalongagivenlineofsightinthe30,3132structuressuchasconformersandisomers.interstellarmedium,whichcouldbelinkedtotheoriginofCondensation-inducedspectroscopiccongestionandelec-life’shomochirality.28,31,60trontransportscatteringeffectsareexpectedtoalsoreducetheThemolecularstructuresofgaseousSerconformershavemagnitudeofthePECDincondensedsystemstoasimilarbeeninvestigatedtheoretically42−44,61andexperimentally.41,45extentastheydoforβparametersinnonchiral(andchiral)Theoreticalresultsforionizationenergieshavebeensystems.SmallclusterPECDstudies33−36showedmajor40,62−644063reported;however,onlyTianetal.andClosePECDchangesuponclustering,demonstratingtheratherreportionizationenergiesformorethanoneconformer.Along-rangemolecularpotentialsensitivityofPECD,butphotoelectronspectrumprovidingexperimentaladiabaticandsurprisinglythedecreaseofthemagnitudeofthePECDisverticalionizationenergieshasbeenreportedbyCanningtonnotalwaysobserved.However,thesystemsstudiedsofarwereandHam.65Tothebestofourknowledgethereexistnorelativelysmall(uptoseveralmonomerunits)sothatphotoionizationstudiesofSerclustersnorofaerosolparticles.extrapolatingtothecondensedphaseisfarfrombeingFurthermore,thepresentPECDstudyforSeraerosolparticlesstraightforward.TheobservationofavalenceshellPECDisthefirstreportonPECDforhomochiralaerosolparticles.effectinlargercondensedsampleslikeaerosolparticleshasnotMassspectraofgasphaseSermoleculesproducedbyaerosolyetbeenreported.Nevertheless,therehavebeenreportsonthermodesorptionwithathermodesorbertemperatureof130theenhancementofthecirculardichroism(CD)ofthetotal37,38°Crecordedforphotonenergiesbetween9.4and12.4eVarephotoionizationyieldinaerosolparticlesofchiralsamples,displayedinFigure1.Allmassspectrashowstrongpeaksatm/ascomparedtotheveryweakCDsignalsinisolatedgasphasez60andm/z75,correspondingtothelossofthecarboxylmolecules.Also,theenhancementofPECDforspatially••group(COOH)andthelossofCH2Oafterprotontransferorientedchiralspeciesinthecaseofanisolatedmoleculehas39fromthe−CH2OHsidechaintotheaminegroup,respectively.beenreportedpreviously.Suchanorientationcanbeseenasafirststepfromrandomlyorientedspeciestowardlocalorder.Potentialenhancementbylocalorderemergingincondensa-tionprocessesmakesPECDhighlyinterestingasaprobetostudytheeffectsofsuchphasetransitionsonchiralbiomolecules.Besides,changestotheconformationalland-scapearealsoexpectedtooccuruponcondensation,whichfurtherincreasesthepotentialofPECD,whichhasbeendemonstratedtobehighlysensitivetomolecularconforma-27,30tions.Suchchangesplayamajorroleincondensation,crystallization,andsolvationofbiologicallyrelevantmoleculeslikeaminoacidsandsugars.TheprerequisitefortheapplicationofPECDtostudycondensationeffectsis,however,thattheintrinsicPECDeffectisstrongenoughorenhancedbythecondensation,inordertooutweightheblurringofangularasymmetriesbyelectrontransportscattering.Inthisexperimentalstudy,carriedoutwithVUVsynchrotronradiationcoupledtoadoubleimagingelectron/ioncoincidencespectrometer(i2PEPICO),wecomparethephotoelectronspectra(PES)andPECDofthechiralproteinogenicaminoacidserine(Ser)inthegasphasewithitshomochiralandracemicaerosolparticles(seetheSIforthecharacterizationofthelatter).Serineisaparticularlyinterestingsystemforseveralreasons.Inthegasphase,thereexistseveralenergeticallylowlyingneutralconformersthatdifferinthearrangementofintramolecularhydrogen40−45bondsthatmightbedistinguishedbytheirPESandmostofalltheirPECDasshownonotherspe-27,28,30,31,46,47cies.Besides,Serisknowntoreadilyformexceptionallystable,thoughnoncovalentlybound,enantiopureoctamerclustersSerandSerH+undervariousexperimental8848−52conditions.TheseoctamerscontainseveralconformersofzwitterionicSermolecules,whilethecrystallineformofsolid53−56Serisbuiltuponasinglezwitterionicconformer.Figure1.MassspectraofgaseousSermoleculesphotoionizedwithFurthermore,Serisassumedtohavebeenamongthefirstphotonenergiesof9.4,10.2,11.0,and12.4eV(bottomtotop).The57,58aminoacidsrecruitedbylifeandisthereforeofsignificantinsetshowstheweaksignalarisingfromintactSercationsofm/z105interestforbiochemicalevolutionandfortheoriginofinthemassspectrumrecordedata9.4eVphotonenergy.2386https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

2TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterWhileat9.4eVthosetwofragmentsdominatethemassspectrum,othermassesappearathigherphotonenergies,withm/z87,74,57,and43beingthemostabundant.IntactSerparentcations(m/z105)areonlyobservedinextremelylowabundanceinthemassspectrumrecordedveryclosetotheionizationenergy,at9.4eV,sothatonecaninferthatata130°Csampletemperature(seediscussionofExperimentalMethodsbelow)thiscationishighlyunstable,fragmentingassoonascreatedevenatlowexcessenergy.ThemostabundantfragmentionsaresummarizedinTable1,togetherTable1.MainFragmentMasseswithinthe8.9−12.5eVPhotonEnergyRangeandPossibleDissociationChannelsLeadingtoThoseFragmentsm/zneutralfragmentslostfragmentationprocess87H2OeliminationofH2O60•COOHC−CcleavageαFigure2.Mass-selectedTPESofthemainfragmentsarisingfromthe75•CHOC−Ccleavagewithprotontransferfrom2αβphotoionizationofgasphaseSermolecules(colored)andthesumofOHallfragmentTPES(black).Asmentionedinthetext,theparentsignal74•CHOHC−Ccleavagewithoutprotontransfer2αβistoolow,evenatlowphotonenergies,andthushasnotbeenadded57•CHO+HOC−Ccleavagewithprotontransferfrom22αβtotheplot.SeealsoFigureS4andTableS1forfurtherdataonotherOHfollowedbylossofH2Ominorfragments.43H2OandCO2oreliminationofH2OandCO2orCα−C•COOHandNHcleavagefollowedbylossofNH33Table2.CalculatedAdiabaticIonizationEnergiesandPredictedIonicDissociationChannelsfromReference40withpossibledissociativeionizationpathwaysleadingtotheirFollowingtheLabelingoftheConformersfromReferenceformation.Themassspectraandtheobservedfragmentsagree4041andComparisontotheObservedFragmentsandTheirwellwithpreviousworkonSer,andmostoftheAppearanceEnergiesfromThisWorkfragmentationchannelsobservedfortheSercation(discussedinmoredetailintheSI)havealsobeenobservedforother31,40,46,64,66,67aminoacidsinthepast.40Tianetal.discussthedifferentionicfragmentsandtheirdifferentappearanceenergieswithrespecttothepresenceofthefourmainconformersofSer(displayedschematicallyinFigureS3intheSI),whichdifferintheirintramolecularH-bondarrangementleadingtodifferentdissociativeionizationpathwaysandionizationenergies.Thethresholdphotoelectronspectra(TPES)ofthedifferentfragmentationchannels(seeFigure2)donotjustshowdifferentappearanceenergies(AEs)assummarizedinTable2butalsodifferpronouncedlyinshape,position,andrelativeintensityofthevariouselectronicbands.ThesumTPESwithanionizationenergy(IE)around8.9eVandthreebroadoverlappingbandsagreeswellwiththephotoelectronspectrathethreefragmentationchannels.Atthephotonenergies65describedbyCanningtonandHam.wheremeasurementswereperformedforbothD-andL-Ser,the40Tianetal.havecalculatedadiabaticandverticalionizationPECDdatashowclearly,withinourerrorbars,theexpectedenergiesforthefourmoststableconformersofSer(labeledIa,mirroringbehaviorforthetwoenantiomers.Overall,forany41I′b,IIb,andIIc,followingBlancoetal.)andpredictedgivenorbital(bindingenergy)thePECDexhibitsamarkedpreferredfragmentationchannelsforeachoftheseconformersdependenceonthephotonenergy(PECDisacontinuumbasedonionicequilibriumstructures.Theseresultsareeffect)andonthebindingenergyatanygivenphotonenergysummarizedinTable2andcomparedtotheappearance(PECDisalsoaninitialorbitaleffect),withmaximumvaluesenergiesofthevariousfragmentsinourwork(seetheSIforontheorderof∼4−5%,reachingupto∼9%at10.2eVintheextendedinformationonthefragmentationchannelsandam/z74channel.BecausephotoelectronsejectedfromthesamemoredetailedcomparisonwiththecalculationsbyTianetcationicstateshouldgiveequalPECDindependentlyofthe40al.,includingFiguresS3andS4andTableS1).Thefinalfragmentationpathway,thesignificantdifferencesagreementofthedeterminedappearanceenergies,theshapeofbetweenthePECDmeasuredatagivenbindingenergyfortheTPES,andthepartialagreementofthefragmentationdifferentfragmentmassesfurthersupportsthepreviouspatternsarecompatiblewiththepresenceofthefourmaininterpretationofdifferentconformers,exhibitingacon-conformersunderourexperimentalconditions.former-dependentfragmentationpattern,aneffectalready31Thefragmentmass-resolvedPESandPECDrecordedatencounteredinproline.ThehighsensitivityofPECDonfixedphotonenergiesforthemainfragments,m/z60,75,andmolecularstructureshasbeenpreviouslydemonstra-27,28,30,31,4674,aredisplayedinFigure3.ThesePESconfirmtheted,andthePECDdeterminedfordifferentSerpreviouslydescribedspectraldifferencesamongtheTPESofconformersisanotherexampleforthis.2387https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

3TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterFigure4.PESandenergydependentαparametersrecordedathν=9.4,10.2,11.0,and12.5eV(red,blue,green,andblack,respectively)Figure3.PES(toprow)andPECDrecordedforfragmentmassesofforracemicSerparticlesasafunctionoftheelectronbindingenergy.60amu(secondrow),75amu(thirdrow),and74amu(fourthrow)ThePESarescaledtorepresentapproximatelytherelativeatphotonenergiesof10.2eV(leftcolumn),11eV(centercolumn),photoionizationcrosssectionsatthedifferentphotonenergies.Theand12.4eV(rightcolumn).PECDforL-SerisshownbyredinsetshowsarawbackgroundsubtractedVMIimageofracemicSerdownwardpointingtrianglesandforD-Serbyblueupwardpointingparticles(top)recordedat11eVphotonenergyandthetriangles.corresponding2Dcenterslicethroughthereconstructed3Ddistribution(bottom).Thewhitearrowsindicatethelightpropagationdirection.NotethatthesignofthePECD(negativefortheL-enantiomer),forallmasschannels,i.e.,forallconformers,isidenticaltothesignobservedforalanineandprolineforwithitsreconstructedimage,i.e.,thecentersliceofthe28,31,46,60Lyman-αradiation(10.2eV).Thisphotonenergyisreconstructed3Ddistribution.Theenergydependentβofparticularrelevancefortheastrophysicalscenarioregardingparametershavealsobeenobtainedbutarenotshownhere28,60theoriginofthehomochiralityoflife,duetoitslargebecausetheyarevanishing(β≤0.06±0.1)forallofthedominanceintheinterstellarspace.Thefactthatallfragmentsphotoelectronimages.Atallphotonenergies,thePESexhibita(i.e.,allconformers)forwhichweareabletomeasureaPECDsinglebroadbandwithnoresolvedelectronicstructure,unlike28,3160at10.2eVshowthesamesignasprolineandalaninetheisolatedmolecule(seeFigure3).ThePESrecordedatsupportstheproposedscenario,inwhichPECD-induceddifferentphotonenergiesshowallthesameonsetatabout8asymmetricphotoionizationprocessescreatespatialregionseV,roughly1eVbelowthelowestonsetdeterminedforgaswithanenantiomericexcessofaminoacidparentcations.ThephaseSermolecules.Apreviousstudyofaminoacidandcreationofenantiomericexcessis,however,onlypossibleifthepeptidenanoparticlesfoundacomparableshift,albeitslightlyasymmetricallyejectedphotoelectronscanbetranslatedontolarger,betweentheonsetforthenanoparticlesandthegas8therecoilvelocitydistributionofintactparentcations.phase.Theobtainedα-parametersfollowasimilartrendforHowever,coldinterstellarconditionscould,withoutaffectingthefourdifferentphotonenergies.Overthefullwidthathalf-theconformer-independentsignofthePECD,increasethemaximumoftheband,theαparameterstaysratherconstantparentcationyieldbecauseofthestronglyreducedinternalbutdecreaseswithincreasingphotonenergyfrom∼0.73at9.4energyintheneutralmoleculesothatpartoftheparenteVphotonenergy,downto∼0.46foraphotonenergyof12.5cationscouldremainbound,owingtotheshallowbutnoneV.Atlowelectronbindingenergy,i.e.,towardtheedgeofthenegligiblebarriercalculatedforthefragmentationofSerband,theαparametersincreasetowardvaluesaround1,40cations.indicatingavanishingshadowingeffect,correlatedtotheThePESandα-parametersobtainedfromthereconstructionvanishingsignal-to-backgroundfromtheaerosols.ofthephotoelectronimagesrecordedforracemicSeraerosolsIngeneral,aquantitativeinterpretationoftheα-parametersareshowninFigure4onanelectronbindingenergy(eBE)requirespriorknowledgeabouteitherlightscatteringandscale.Notethatallaerosoldatapresentedinthisstudywereabsorptioncoefficients(i.e.,complexrefractiveindices)oftheobtainedforpolydisperseaerosols,welldescribedbylog-materialoraboutthekineticenergydependentelectronnormalsizedistributionswithanaveragemobilitydiameterofscatteringprocesseswithinthematerial.Forexample,prior∼140nm,asdeterminedusingascanningmobilityparticleknowledgeofcomplexrefractiveindexdatacanbeusedtosizer(seeSI).Furthermore,fromtheelectronmicroscopyobtaininformationonelectronscatteringwithinamaterial15,16,18measurementsofthedepositedparticles,theyareassumedtofromtheα-parametersanalysisandviceversa.Thelackbemostlyamorphousinnature,butthepossibilitythattheyofsuchdataforSerinadditiontothepolydispersenatureofmaycontainsomecrystallineregionscannotbeexcluded(seetheatomizeroutputmakesaquantitativeinterpretationofthetheelectronmicroscopyimagesinFigureS2oftheSI).Theobtainedα-parameterscurrentlyimpossible.Afewobserva-insetinFigure4showstherawphotoelectronVMIimagetionscan,however,bequalitativelyrationalized.Theobtainedataphotonenergyof11eVforracemicSer,alongpronouncedtrendtowardlowerαparameters(i.e.,stronger2388https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

4TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLettershadowing)forhigherphotonenergiesagreewithanTheuncorrecteddataisshowntogetherwiththevirtuallyzeroabsorptioncoefficientincreasingwithphotonenergy.SuchPECDbaselinesoftheracemicparticlesinFigureS6oftheSI.anincreaseoftheabsorptioncoefficientisexpecteddirectlyAtallphotonenergies,aclearnonvanishingPECDisobserved,abovetheionizationthresholdofasubstance.ElectronsofascanbeseenfromthenicelymirroringL-SerandD-Serdataidenticalkineticenergyshowthesameelectronscatteringsets.Moreover,theaerosolPECDclearlydiffersqualitativelybehaviorandthereforethesameelectronescapelength.AscanandquantitativelyfromthePECDobservedfortheSergasbeseenfromFigure4,however,inthepresentcasethephaseconformers.Phenomenologically,inthemeasurementsincreaseoftheα-parameteroccursroughlyatidenticalelectronusingphotonenergiesbelow12.5eV,forhighKE(i.e.,lowbindingenergies(i.e.,atdifferentelectronkineticenergies)foreBE)thesignofthenanoparticles’PECDagreeswiththeonealldifferentphotonenergies.ThismeansthattheincreaseinofthegasphaseSer(negativeforL-Ser).TowardlowerKE,thetheαvaluescannotbeattributedtothekineticenergyPECDfirstdecreasestozeroandthenchangestotheoppositedependenceoftheelectronescapelengthbutseemstosignatthelowestKE,aquitespectaculareffectconsideringtheoriginatefromthedecreaseoftheaerosolphotoelectronsignalcorrespondingverybroadandfeaturelessPES.Inthetowardanisotropicbackgroundlevel.Thesameeffectismostmeasurementsata12.5eVphotonenergythesignofthelikelyresponsiblefortheslightincreaseoftheα-parametersPECDappearsinverted,althoughtheverylowmagnitudeandtowardhighelectronbindingenergies,forwhichthesignalrelativelylargeerrorbarsmakeitdifficulttodistinguishthePECDfromzero.intensitiesdecreaseaswell.Itseems,thus,thatthereisnoThechangeofthesignofthePECDisobservedataverypronouncedkineticenergydependenceoftheelectronescapesimilarelectronkineticenergy(∼0.6−0.9eV)(i.e.,largelyprobabilityofphotoelectronsfromsolidSeraerosolparticlesdifferentelectronbindingenergies)forphotonenergiesuptobelow5eVkineticenergy.11eV.IfthissignchangewasrelatedtoafeatureintheThePECDdataobtainedfromthedifferencesbetweentheelectronicbandstructure,itwouldbeexpectedtooccuratLCPandtheRCPimagesforL-andD-SerareshowninFigureidenticalelectronbindingenergies,i.e.,largelydifferent5fordifferentphotonenergies.NotethatthePECDdataiselectronkineticenergies,shiftingby1.6eVbetweenphotoncorrectedforabaselinedeterminedfromracemicSerparticles.energiesof9.4and11eV.Thelackofthispronouncedshiftonthekineticenergyaxisindicatesthatthissignchangecannotbeexplainedbythepresenceofdifferentcongestedelectronic68statesasitisusuallythecaseforgasphaseexperiments,butratherpointsattheeffectofkineticenergy-dependentinteractions,occurringbetweenthedepartingphotoelectronsandthechiralmolecularpotential.Kineticenergyeffectsinthe27,29continuumarewelldocumentedinthegasphaseandarealsoseenhereforthegasphaseSerconformers.Inthecaseofaerosols,anadditionalkineticenergy-dependenteffectarisesfromelasticandinelasticelectrontransportscattering,whichis,however,notexpectedtoaffectthesignofthechiralasymmetry.Inaddition,andcomparedtothegasphase,thelackofdependencyonthebindingenergy(atleastuptophotonenergiesof11eV)isstrikingandmightbeexplainedbythehighlydelocalizedandmixednatureofthe4eVbroadelectronicbandseeninFigure5,duetocondensationeffects.ThissingleinitialstatewouldbeassociatedwithPECDvaluesexhibitingstrongKEeffects,i.e.,continuum(finalstate)effects,suchasasignchangeandmagnitudevariations.Overall,themagnitudeofthePECDisreducedascomparedtothegasphase.WhileforthegasphaseweobservedaPECDofupto>5%,themaximumobservedforaerosolparticles(at10.2eV)isslightlyhigherthan1%.At9.4and11.0eVphotonenergies,thePECDstillreaches∼0.5%,whereasthePECDisevensmaller,barelydistinguishable,at12.5eV.ThereducedmagnitudeofthePECDobservedfortheSeraerosolsascomparedtothegasphasemightbereadilyexplainedbythepresenceofelectrontransportscatteringeffects.Thepossiblemagnitudeofsuchscatteringeffectsonphotoelectronanisotropiesdescribedbyβparametershasbeen1320,21,26previouslydemonstratedforaerosols,liquidjets,and22−25largeclusters.Inpractice,studiesofvalencephotoelectronVMIinfactoftenassumedβparametersofzeroformanykindsofaerosolparticles.TakingthisintoaccountitmayevenbeFigure5.PESandPECDofSeraerosolparticlesrecordedatphotonenergiesof9.4,10.2,11.0,and12.5eVforL-Ser(red)andD-SersurprisingthatthePECDobservedforSeraerosolparticlesis(blue).ThePECDdataiscorrectedaccordingtoeq1,andaPECDonlyreducedmoderately,fromabout2−5%forthegasphasebaselinedeterminedfromracemicSerparticleshasbeensubtractedto0.5−1%foraerosolparticles.Thislimitedreductionmay(seeSI).indicateareducedsensitivityofPECDtoelectrontransport2389https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

5TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterscattering.SuchareducedsensitivitycanbeexplainedmeasurementsofgaseousSermoleculesthefocusedbeamofconsideringitsangulardependency.PECDdescribesanaerosolswasalignedontotheheated(130°C)porous66asymmetrydependinglinearlyoncos(θlab)whilethetungstentipofanaerosolthermodesorber(TD)tocreateanisotropydescribedbyaβparameterdependsoncos(2θ)aplumeofneutralgaseousSer,whichwasionizedusingthelabmonochromatizedVUVsynchrotronradiationfromthe(seetheSIfortheformalPECDdefinition).Therefore,PECD71variablepolarizationundulator-basedbeamlineDESIRSatmaybelessaffectedbyelectronscatteringeventsthattypicallySOLEILsynchrotron.Theemittedphotoelectronsandphoto-changetheelectronpropagationdirectiononlybyasmallangleionsaredetectedincoincidenceusingtheDELICIOUSIIIatatime,sincealargeraverageangularchangeisnecessarytodoubleimagingphotoelectronphotoioncoincidencemakethephotoelectronangulardistributionisotropic.270(iPEPICO)spectrometer,whichcombinesaphotoelectronFurthermore,itisverypossiblethattheincreasedlocalorderVMIspectrometerandamodifiedWiley−McLaren3D-inasolidenvironmentenhancestheintrinsicasymmetryviamomentumimagingtime-of-flightphotoionmassspectrometerinteractionsofthedepartingphotoelectronswiththelocallytoperformangle-resolvedphotoelectronspectroscopyonorderedscatteringpotential.Notethatsomeshort-rangelocalmass-selectedsamples.Inthecurrentstudythemassresolutionordercanbeassumedtobepresenteveninamorphoussolids.38isusedtodistinguishdifferentphotoionfragmentationAchiralcrystallattice,ashasbeenreportedfortyrosine,ischannelsandtodiscardbackgroundmolecules,whiletheionnotanecessaryrequirementforsuchanenhancementeffect.imageisfurtherusedtodiscardsignalsarisingfromtheouterAnincreasedintrinsicPECDcreatedbythelocalordercouldregionsoftheplumeofgaseousSerbyexclusivelyusingionsinpartcounterbalancethestrongblurringofanisotropiesfallingwithinaregionofinterestofthepositionsensitiveioncausedbyelectrontransportscatteringprocesses.detector(ROI-filtering).Mass-selectedthresholdphotoelec-Forratherlargeandflexiblemolecules,themoleculartronspectra(TPES)wereobtainedforgaseousL-Serbetweenconformationisaffectedbycondensationaswell,whichinturn8.7and12.5eVandanalyzedfollowingapublishedaffectstheintrinsicPECD,asexperimentallydemonstrated7331procedure.Fixed-photonenergydataacquisitionstoobtainrecentlyongasphaseproline.Indeed,fromFigure3onecanmass-selectedROI-filteredPESandPECDwererunatphotoninferthattheshapeandmagnitudeofthePECDarenottheenergiesof9.4,10.2,11.0,and12.4eV.sameforthedifferentconformersofSerinthegasphase.Forthemeasurementsofdirectaerosolphotoemission,theWhilethestabilityoftheseconformersinthegasphaseisTDwasremovedfromthespectrometerchamberanditsgovernedbyintramolecularhydrogenbonds,itisknownthat,flangereplacedbyanadditionalturbopump.FortheseuponclusterformationorcondensationofSer,someofthesemeasurementsonlythephotoelectronVMIsideoftheintramolecularhydrogenbondsarelostinfavorofspectrometerwasused.ThisnoncoincidentmodeofoperationintermolecularonesandtheneutralSermoleculesaremakesthemeasurementandsubtractionofbackgroundimagestransformedintotheirzwitterionicforms.Inthiscontext,itnecessary.Therefore,backgroundimageswererecordedwhileseemsplausiblethatdifferent,andpossiblyfewer,conformersrunningtheaerosolgenerationwithpurewater.Fixed-photonareinvolvedinthemostlyamorphousparticulatestate.ThisenergyPESandPECDmeasurementswereperformedfortheeffectisalsolikelytoaffecttheenergydependenceandaerosolscreatedfromL-andD-homochiralandracemicSerpossiblyenhancethemagnitudeoftheinitialintrinsicPECDofsolutionsatphotonenergiesof9.4,10.2,11.0,and12.5eV.SeraerosolsascomparedtotheisolatedgasphaseconformersForbothgasphaseandaerosolsmeasurements,thedatawhosenumerousPECDcontributionsmightleadtoablurring46,69acquisitionwascarriedoutforseveralhourswhileswitchingoftheobservedPECD.thelighthelicitybetweentheleft-andtheright-handed(LCPIncontrasttotheanisotropiesdescribedbyβparameters,andRCP)every∼10mininordertolimittheeffectofslowwhichareoftenassumedtobezeroinvalenceshellaerosoldriftsintheexperimentalconditions.Accordingtoapreviouslyphotoelectronimagingstudies,thehighlystructuredand68describedprocedure,thesum(LCP+RCP)anddifferencerelativelylargechiralasymmetrypresentedheredemonstrates(LCP−RCP)imageswereinvertedviathepBasexthepotentialofPECDasanobservablesensitiveto74algorithm,toobtainthePESandPECD(seethedetailsincondensationeffectsfromthegasphasetobulk-likeaerosoltheSI).NotethatPECDisdefinedastwicethedichroicparticles.FuturePECDstudiesofnanoparticlescrystallizinginachirallattice,suchastyrosine,38likelyenhancingchiralparameter,i.e.,2b1,whichrepresentsthemagnitudeofthenormalizedforward/backwardasymmetryinthedifferenceasymmetries,wouldallowinadditiontheexplorationofimage(seetheSIfordetails),andisreportedasapercentagesupramolecularchiralityeffects.ofthetotalphotoionizationcrosssection.SincetheDESIRSbeamlinedoesnotprovideexactlyidenticalphotonfluxesfor■EXPERIMENTALMETHODSLCPandRCPlight,theimageswerenormalizedtothesameTheexperimentalsetupandmethodologyusedforthecurrenttotalelectroncountbeforeimagesubtractionandsummation.16,66,68,70−72Fortheshadowedaerosolphotoelectronimages,itisshowninstudyhavebeenpreviouslydescribedindetail.Briefly,themeasurementsofisolatedSermoleculesweretheSIthatanidenticalmethodologycanbeusedtoextracttheperformedonSermoleculesbroughtintothegasphasebyPECD,althoughtheanisotropiescreatedbytheshadowing31,46,66effectareconvolutedwiththePECD.Onlyacorrectiongivenaerosolthermodesorption,asoftvaporizationmethod,welladaptedtofragilebiomoleculeswithlowvaporpressures.byAnatomizer(TSI,model3076),operatedwith0.5−1.5barof2He,anddiffusiondriers(TSI,model3062)wereusedtocreate(1+α)aerosolsfromaqueoussolutionsofSer(1g/L).ThesePECDcorrect≈PECDobserved4α(1)aerosols,withanaveragemobilitydiameterofabout140nm(seeSI),weretransmittedintoavacuumandfocusedintotheneedstobeapplied,tocorrectforthenormalization16ionizationregionviaanaerodynamiclenssystem.Fortheprocedure.2390https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

6TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter■MeasureoftheEvanescentElectronWaveFunctionofQuantumASSOCIATEDCONTENTDots.NanoLett.2013,13(6),2924−2930.*sıSupportingInformation(7)Ban,L.;Gartmann,T.E.;Yoder,B.L.;Signorell,R.Low-EnergyTheSupportingInformationisavailablefreeofchargeatElectronEscapefromLiquidInterfaces:ChargeandQuantumEffects.https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00258.Phys.Rev.Lett.2020,124(1),013402.Aerosolparticlesizedistributionsandcharacterization,(8)Wilson,K.R.;Peterka,D.S.;Jimenez-Cruz,M.;Leone,S.R.;Ahmed,M.VUVPhotoelectronImagingofBiologicalNanoparticles:dataevaluationforshadowedphotoelectronimages,andIonizationEnergyDeterminationofNanophaseGlycineandPhenyl-fragmentationofgasphaseserineconformers(PDF)alanine-Glycine-Glycine.Phys.Chem.Chem.Phys.2006,8(16),1884−1890.■(9)Tigrine,S.;Carrasco,N.;Bozanic,D.K.;Garcia,G.A.;Nahon,AUTHORINFORMATIONL.FUVPhotoionizationofTitanAtmosphericAerosols.Astrophys.J.CorrespondingAuthor2018,867(2),164.SebastianHartweg−SynchrotronSOLEIL,91192CedexGif(10)Xu,B.;Jacobs,M.I.;Kostko,O.;Ahmed,M.GuanidiniumsurYvette,France;orcid.org/0000-0002-3053-683X;GroupRemainsProtonatedinaStronglyBasicArginineSolution.Email:sebastian.hartweg@synchrotron-soleil.frChemPhysChem2017,18(12),1503−1506.(11)Su,C.-C.;Yu,Y.;Chang,P.-C.;Chen,Y.-W.;Chen,I.Y.;Lee,AuthorsY.-Y.;Wang,C.C.VUVPhotoelectronSpectroscopyofCysteineGustavoA.Garcia−SynchrotronSOLEIL,91192CedexGifAqueousAerosols:AMicroscopicViewofItsNucleophilicityatsurYvette,France;orcid.org/0000-0003-2915-2553VaryingpHConditions.J.Phys.Chem.Lett.2015,6(5),817−823.DusanK.Božanič́−DepartmentofRadiationChemistryand(12)Ellis,J.L.;Hickstein,D.D.;Xiong,W.;Dollar,F.;Palm,B.B.;Physics,“VINČA”InstituteofNuclearSciences-NationalKeister,K.E.;Dorney,K.M.;Ding,C.;Fan,T.;Wilker,M.B.;InstituteoftheRepublicofSerbia,UniversityofBelgrade,Schnitzenbaumer,K.J.;Dukovic,G.;Jimenez,J.L.;Kapteyn,H.C.;Murnane,M.M.MaterialsPropertiesandSolvatedElectron11001Belgrade,Serbia;orcid.org/0000-0001-8246-DynamicsofIsolatedNanoparticlesandNanodropletsProbedwith9635UltrafastExtremeUltravioletBeams.J.Phys.Chem.Lett.2016,7(4),LaurentNahon−SynchrotronSOLEIL,91192CedexGifsur609−615.Yvette,France;orcid.org/0000-0001-9898-5693(13)Kostko,O.;Jacobs,M.I.;Xu,B.;Wilson,K.R.;Ahmed,M.Completecontactinformationisavailableat:VelocityMapImagingofInelasticandElasticLowEnergyElectronhttps://pubs.acs.org/10.1021/acs.jpclett.1c00258ScatteringinOrganicNanoparticles.J.Chem.Phys.2019,151(18),184702.(14)Goldmann,M.;Miguel-Sánchez,J.;West,A.H.C.;Yoder,B.NotesL.;Signorell,R.ElectronMeanFreePathfromAngle-DependentTheauthorsdeclarenocompetingfinancialinterest.PhotoelectronSpectroscopyofAerosolParticles.J.Chem.Phys.2015,142(22),224304.■ACKNOWLEDGMENTS(15)Signorell,R.;Goldmann,M.;Yoder,B.L.;Bodi,A.;WethankJ.-F.GilforhistechnicalhelparoundthemolecularChasovskikh,E.;Lang,L.;Luckhaus,D.Nanofocusing,Shadowing,beamchamber.Furthermore,wethankS.LorcyforhishelpandElectronMeanFreePathinthePhotoemissionfromAerosolDroplets.Chem.Phys.Lett.2016,658,1−6.withtheelectronmicroscopyimages.Weareindebtedtothe(16)Bozanič,D.K.;Garcia,G.A.;Sublemontier,O.;Pajović,J.;́generalSOLEILstaffforsmoothlyrunningthefacilityunderDjokovic,V.;Nahon,L.VelocityMapImagingVUVAngle-Resolved́Project20191602.PhotoemissiononIsolatedNanosystems:CaseofGoldNanoparticles.J.Phys.Chem.C2020,124(44),24500−24512.■REFERENCES(17)Seiffert,L.;Liu,Q.;Zherebtsov,S.;Trabattoni,A.;Rupp,P.;(1)Ban,L.;Yoder,B.L.;Signorell,R.PhotoemissionfromFreeCastrovilli,M.C.;Galli,M.;Süßmann,F.;Wintersperger,K.;Stierle,ParticlesandDroplets.Annu.Rev.Phys.Chem.2020,71(1),315−J.;Sansone,G.;Poletto,L.;Frassetto,F.;Halfpap,I.;Mondes,V.;334.Graf,C.;Rühl,E.;Krausz,F.;Nisoli,M.;Fennel,T.;Calegari,F.;(2)Ahmed,M.;Kostko,O.FromAtomstoAerosols:ProbingKling,M.F.AttosecondChronoscopyofElectronScatteringinClustersandNanoparticleswithSynchrotronBasedMassSpectrom-DielectricNanoparticles.Nat.Phys.2017,13(8),766−770.etryandX-RaySpectroscopy.Phys.Chem.Chem.Phys.2020,22(5),(18)Wilson,K.R.;Zou,S.;Shu,J.;Rühl,E.;Leone,S.R.;Schatz,G.2713−2737.C.;Ahmed,M.Size-DependentAngularDistributionsofLow-Energy(3)Sublemontier,O.;Nicolas,C.;Aureau,D.;Patanen,M.;Kintz,PhotoelectronsEmittedfromNaClNanoparticles.NanoLett.2007,7H.;Liu,X.;Gaveau,M.-A.;LeGarrec,J.-L.;Robert,E.;Barreda,F.-A.;(7),2014−2019.Etcheberry,A.;Reynaud,C.;Mitchell,J.B.;Miron,C.X-Ray(19)Eland,J.H.D.;Eland,J.H.D.PhotoelectronSpectroscopy:AnPhotoelectronSpectroscopyofIsolatedNanoparticles.J.Phys.Chem.IntroductiontoUltravioletPhotoelectronSpectroscopyintheGasPhase;Lett.2014,5(19),3399−3403.Butterworths:1974.(4)Milosavljevic,A.R.;Boźanič,D.K.;Sadhu,S.;Vukmirović,N.;́(20)Thürmer,S.;Seidel,R.;Faubel,M.;Eberhardt,W.;Dojcilovič,R.;Sapkota,P.;Huang,W.;Bozek,J.;Nicolas,C.;Nahon,́Hemminger,J.C.;Bradforth,S.E.;Winter,B.PhotoelectronAngularL.;Ptasinska,S.ElectronicPropertiesofFree-StandingSurfactant-DistributionsfromLiquidWater:EffectsofElectronScattering.Phys.CappedLeadHalidePerovskiteNanocrystalsIsolatedinVacuo.J.Rev.Lett.2013,111(17),173005.Phys.Chem.Lett.2018,9(13),3604−3611.(21)Hartweg,S.;Yoder,B.L.;Garcia,G.A.;Nahon,L.;Signorell,R.(5)Meinen,J.;Khasminskaya,S.;Eritt,M.;Leisner,T.;Antonsson,Size-ResolvedPhotoelectronAnisotropyofGasPhaseWaterClustersE.;Langer,B.;Rühl,E.CoreLevelPhotoionizationonFreeSub-10-andPredictionsforLiquidWater.Phys.Rev.Lett.2017,118(10),nmNanoparticlesUsingSynchrotronRadiation.Rev.Sci.Instrum.103402.2010,81(8),085107.(22)Zhang,H.;Rolles,D.;Pesič,Z.D.;Bozek,J.D.;Berrah,N.́(6)Xiong,W.;Hickstein,D.D.;Schnitzenbaumer,K.J.;Ellis,J.L.;AngularDistributionsofInner-ShellPhotoelectronsfromRare-GasPalm,B.B.;Keister,K.E.;Ding,C.;Miaja-Avila,L.;Dukovic,G.;Clusters.Phys.Rev.A:At.,Mol.,Opt.Phys.2008,78(6),063201.Jimenez,J.L.;Murnane,M.M.;Kapteyn,H.C.Photoelectron(23)Berrah,N.;Rolles,D.;Pesič,Z.D.;Hoener,M.;Zhang,H.;́SpectroscopyofCdseNanocrystalsintheGasPhase:ADirectAguilar,A.;Bilodeau,R.C.;Red,E.;Bozek,J.D.;Kukk,E.;Díez2391https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

7TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetterMuiño,R.;GarcíadeAbajo,F.J.ProbingFreeXenonClustersfrom(40)Tian,S.X.;Yang,J.;Li,H.-B.;Pan,Y.;Zhang,T.;Sheng,L.Within.Eur.Phys.J.:Spec.Top.2009,169(1),59−65.StericEffectinThresholdPhotoionizationDissociationsofSerine(24)Gartmann,T.E.;Hartweg,S.;Ban,L.;Chasovskikh,E.;Yoder,Conformers.arXiv,0807.0062,2008.B.L.;Signorell,R.ElectronScatteringinLargeWaterClustersfrom(41)Blanco,S.;Sanz,M.E.;López,J.C.;Alonso,J.L.RevealingthePhotoelectronImagingwithHighHarmonicRadiation.Phys.Chem.MultipleStructuresofSerine.Proc.Natl.Acad.Sci.U.S.A.2007,104Chem.Phys.2018,20(24),16364−16371.(51),20183.(25)Rolles,D.;Zhang,H.;Pesič,Z.D.;Bozek,J.D.;Berrah,N.́(42)He,K.;Allen,W.D.ConformersofGaseousSerine.J.Chem.EmergenceofValenceBandStructureinRare-GasClusters.Chem.TheoryComput.2016,12(8),3571−3582.Phys.Lett.2009,468(4),148−152.(43)Miao,R.;Jin,C.;Yang,G.;Hong,J.;Zhao,C.;Zhu,L.(26)Nishitani,J.;West,C.W.;Suzuki,T.Angle-ResolvedComprehensiveDensityFunctionalTheoryStudyonSerineandPhotoemissionSpectroscopyofLiquidWaterat29.5eV.Struct.RelatedIonsinGasPhase:Conformations,GasPhaseBasicities,andDyn.2017,4(4),044014.Acidities.J.Phys.Chem.A2005,109(10),2340−2349.(27)Nahon,L.;Garcia,G.A.;Powis,I.ValenceShellOne-Photon(44)Gronert,S.;O’Hair,R.A.J.AbInitioStudiesofAminoAcidPhotoelectronCircularDichroisminChiralSystems.J.ElectronConformations.1.TheConformersofAlanine,Serine,andCysteine.Spectrosc.Relat.Phenom.2015,204,322−334.J.Am.Chem.Soc.1995,117(7),2071−2081.(28)Hadidi,R.;Bozanic,D.K.;Garcia,G.A.;Nahon,L.Electron(45)Lambie,B.;Ramaekers,R.;Maes,G.ConformationalBehaviorAsymmetriesinthePhotoionizationofChiralMolecules:PossibleofSerine:AnExperimentalMatrix-IsolationFT-IRandTheoreticalAstrophysicalImplications.AdvancesinPhysics:X2018,3(1),DFT(B3LYP)/6-31++G**Study.J.Phys.Chem.A2004,108(47),1477530.10426−10433.(29)Powis,I.PhotoelectronCircularDichroisminChiral(46)Tia,M.;CunhadeMiranda,B.;Daly,S.;Gaie-Levrel,F.;Molecules.InAdv.Chem.Phys.2008,267−329.Garcia,G.A.;Nahon,L.;Powis,I.VUVPhotodynamicsandChiral(30)Turchini,S.ConformationalEffectsinPhotoelectronCircularAsymmetryinthePhotoionizationofGasPhaseAlanineEnantiomers.Dichroism.J.Phys.:Condens.Matter2017,29(50),503001.J.Phys.Chem.A2014,118(15),2765−2779.(31)Hadidi,R.;Bozanič,D.K.;Ganjitabar,H.;Garcia,G.A.;Powis,́(47)Garcia,G.A.;Nahon,L.;Harding,C.J.;Powis,I.ChiralI.;Nahon,L.Conformer-DependentVUVPhotodynamicsandChiralSignaturesinAngle-ResolvedValencePhotoelectronSpectroscopyofAysmmetriesinPureEnantiomersofGasPhaseProline,submitted.PureGlycidolEnantiomers.Phys.Chem.Chem.Phys.2008,10(12),PreprintavailableatResearchSquare:DOI:10.21203/rs.3.rs-1628−1639.102497/v1.(48)Nanita,S.C.;Cooks,R.G.SerineOctamers:Cluster(32)Nahon,L.;Nag,L.;Garcia,G.A.;Myrgorodska,I.;Formation,Reactions,andImplicationsforBiomoleculeHomochir-Meierhenrich,U.;Beaulieu,S.;Wanie,V.;Blanchet,V.;Géneaux,ality.Angew.Chem.,Int.Ed.2006,45(4),554−569.R.;Powis,I.DeterminationofAccurateElectronChiralAsymmetries(49)Zhang,D.;Koch,K.;Tao,W.;Cooks,R.InClusteringofinFenchoneandCamphorintheVUVRange:SensitivitytoAminoAcidsintheGasPhasebyElectrosprayIonizationMassIsomerismandEnantiomericPurity.Phys.Chem.Chem.Phys.2016,Spectrometry.Proceedingsofthe48thASMSconferenceonmass18(18),12696−12706.spectrometryandalliedtopics;AmericanSocietyforMassSpectrom-(33)Nahon,L.;Garcia,G.A.;Soldi-Lose,H.;Daly,S.;Powis,I.etry:2000.EffectsofDimerizationonthePhotoelectronAngularDistribution(50)Cooks,R.G.;Zhang,D.;Koch,K.J.;Gozzo,F.C.;Eberlin,M.ParametersfromChiralCamphorEnantiomersObtainedwithN.ChiroselectiveSelf-DirectedOctamerizationofSerine:Implica-CircularlyPolarizedVacuum-UltravioletRadiation.Phys.Rev.A:At.,tionsforHomochirogenesis.Anal.Chem.2001,73(15),3646−3655.Mol.,Opt.Phys.2010,82(3),032514.(51)Scutelnic,V.;Perez,M.A.S.;Marianski,M.;Warnke,S.;(34)Powis,I.;Daly,S.;Tia,M.;CunhadeMiranda,B.;Garcia,G.Gregor,A.;Rothlisberger,U.;Bowers,M.T.;Baldauf,C.;vonHelden,A.;Nahon,L.APhotoionizationInvestigationofSmall,HomochiralG.;Rizzo,T.R.;Seo,J.TheStructureoftheProtonatedSerineClustersofGlycidolUsingCircularlyPolarizedRadiationandOctamer.J.Am.Chem.Soc.2018,140(24),7554−7560.VelocityMapElectron−IonCoincidenceImaging.Phys.Chem.(52)Zhang,H.;Wei,Z.;Jiang,J.;Cooks,R.G.NebulizationPriortoChem.Phys.2014,16(2),467−476.Isolation,Ionization,andDissociationoftheNeutralSerineOctamer(35)Daly,S.;Powis,I.;Garcia,G.A.;Soldi-Lose,H.;Nahon,L.AllowsItsCharacterization.Angew.Chem.,Int.Ed.2018,57(52),PhotoionizationofEpichlorohydrinEnantiomersandClusters17141−17145.StudiedwithCircularlyPolarizedVacuumUltravioletRadiation.J.(53)Kistenmacher,T.J.;Rand,G.A.;Marsh,R.E.RefinementsofChem.Phys.2011,134(6),064306.theCrystalStructuresofDl-SerineandAnhydrousL-Serine.Acta(36)Daly,S.;Powis,I.;Garcia,G.A.;Tia,M.;Nahon,L.AnCrystallogr.,Sect.B:Struct.Crystallogr.Cryst.Chem.1974,30(11),ImagingPhotoelectron-PhotoionCoincidenceInvestigationof2573−2578.Homochiral2R,3R-ButanediolClusters.J.Chem.Phys.2017,147(54)King,M.D.;Hakey,P.M.;Korter,T.M.Discriminationof(1),013937.ChiralSolids:ATerahertzSpectroscopicInvestigationofL-andDl-(37)Paul,J.;Dörzbach,A.;Siegmann,K.CircularDichroismintheSerine.J.Phys.Chem.A2010,114(8),2945−2953.PhotoionizationofNanoparticlesfromChiralCompounds.Phys.Rev.(55)King,M.D.;Buchanan,W.D.;Korter,T.M.InvestigatingtheLett.1997,79(16),2947−2950.AnharmonicityofLatticeVibrationsinWater-ContainingMolecular(38)Paul,J.;Siegmann,K.LargeNaturalCircularDichroisminCrystalsthroughtheTerahertzSpectroscopyofL-SerineMono-Photoionization.Chem.Phys.Lett.1999,304(1),23−27.hydrate.J.Phys.Chem.A2010,114(35),9570−9578.(39)Tia,M.;Pitzer,M.;Kastirke,G.;Gatzke,J.;Kim,H.-K.;Trinter,(56)Costa,S.N.;Sales,F.A.M.;Freire,V.N.;Maia,F.F.;Caetano,F.;Rist,J.;Hartung,A.;Trabert,D.;Siebert,J.;Henrichs,K.;Becht,E.W.S.;Ladeira,L.O.;Albuquerque,E.L.;Fulco,U.L.L-SerineJ.;Zeller,S.;Gassert,H.;Wiegandt,F.;Wallauer,R.;Kuhlins,A.;AnhydrousCrystals:Structural,Electronic,andOpticalPropertiesbySchober,C.;Bauer,T.;Wechselberger,N.;Burzynski,P.;Neff,J.;First-PrinciplesCalculations,andOpticalAbsorptionMeasurement.Weller,M.;Metz,D.;Kircher,M.;Waitz,M.;Williams,J.B.;Schmidt,Cryst.GrowthDes.2013,13(7),2793−2802.L.P.H.;Müller,A.D.;Knie,A.;Hans,A.;BenLtaief,L.;Ehresmann,(57)Trifonov,E.N.TheTripletCodefromFirstPrinciples.J.A.;Berger,R.;Fukuzawa,H.;Ueda,K.;Schmidt-Böcking,H.;Dörner,Biomol.Struct.Dyn.2004,22(1),1−11.R.;Jahnke,T.;Demekhin,P.V.;Schöffler,M.Observationof(58)Jordan,I.K.;Kondrashov,F.A.;Adzhubei,I.A.;Wolf,Y.I.;EnhancedChiralAsymmetriesintheInner-ShellPhotoionizationofKoonin,E.V.;Kondrashov,A.S.;Sunyaev,S.AUniversalTrendofUniaxiallyOrientedMethyloxiraneEnantiomers.J.Phys.Chem.Lett.AminoAcidGainandLossinProteinEvolution.Nature2005,4332017,8(13),2780−2786.(7026),633−638.2392https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

8TheJournalofPhysicalChemistryLetterspubs.acs.org/JPCLLetter(59)Meierhenrich,U.AminoAcidsandtheAsymmetryofLife:CaughtintheActofFormation;SpringerScience&BusinessMedia:2008.(60)Tia,M.;CunhadeMiranda,B.;Daly,S.;Gaie-Levrel,F.;Garcia,G.A.;Powis,I.;Nahon,L.ChiralAsymmetryinthePhotoionizationofGas-PhaseAmino-AcidAlanineatLyman-αRadiationWavelength.J.Phys.Chem.Lett.2013,4(16),2698−2704.(61)Lakard,B.AbInitioStudyofAminoAcidsContainingHydroxyGroups(Serine,ThreonineandTyrosine).J.Mol.Struct.:THEOCHEM2004,681(1),183−189.(62)Dehareng,D.;Dive,G.VerticalIonizationEnergiesofα-L-AminoAcidsasaFunctionofTheirConformation:AnAbInitioStudy.Int.J.Mol.Sci.2004,5(11),301−332.(63)Close,D.M.CalculatedVerticalIonizationEnergiesoftheCommonα-AminoAcidsintheGasPhaseandinSolution.J.Phys.Chem.A2011,115(13),2900−2912.(64)Simon,S.;Gil,A.;Sodupe,M.;Bertrán,J.StructureandFragmentationofGlycine,Alanine,SerineandCysteineRadicalCations.ATheoreticalStudy.J.Mol.Struct.:THEOCHEM2005,727(1),191−197.(65)Cannington,P.H.;Ham,N.S.ThePhotoelectronSpectraofAmino-Acids:ASurvey.J.ElectronSpectrosc.Relat.Phenom.1979,15(1),79−82.(66)Gaie-Levrel,F.;Garcia,G.A.;Schwell,M.;Nahon,L.VUVState-SelectedPhotoionizationofThermally-DesorbedBiomoleculesbyCouplinganAerosolSourcetoanImagingPhotoelectron/PhotoionCoincidenceSpectrometer:CaseoftheAminoAcidsTryptophanandPhenylalanine.Phys.Chem.Chem.Phys.2011,13(15),7024−7036.(67)Junk,G.;Svec,H.TheMassSpectraoftheα-AminoAcids.J.Am.Chem.Soc.1963,85(7),839−845.(68)Nahon,L.;Garcia,G.A.;Harding,C.J.;Mikajlo,E.;Powis,I.DeterminationofChiralAsymmetriesintheValencePhotoionizationofCamphorEnantiomersbyPhotoelectronImagingUsingTunableCircularlyPolarizedLight.J.Chem.Phys.2006,125(11),114309.(69)Garcia,G.A.;Soldi-Lose,H.;Nahon,L.;Powis,I.PhotoelectronCircularDichroismSpectroscopyinanOrbitallyCongestedSystem:TheTerpeneEndoborneol.J.Phys.Chem.A2010,114(2),847−853.(70)Garcia,G.A.;CunhadeMiranda,B.K.;Tia,M.;Daly,S.;Nahon,L.DeliciousIII:AMultipurposeDoubleImagingParticleCoincidenceSpectrometerforGasPhaseVacuumUltravioletPhotodynamicsStudies.Rev.Sci.Instrum.2013,84(5),053112.(71)Nahon,L.;deOliveira,N.;Garcia,G.A.;Gil,J.-F.;Pilette,B.;Marcouille,O.;Lagarde,B.;Polack,F.DESIRS:AState-of-the-ArtVUVBeamlineFeaturingHighResolutionandVariablePolarizationforSpectroscopyandDichroismatSOLEIL.J.SynchrotronRadiat.2012,19(4),508−520.(72)Tang,X.;Garcia,G.A.;Gil,J.-F.;Nahon,L.VacuumUpgradeandEnhancedPerformancesoftheDoubleImagingElectron/IonCoincidenceEnd-StationattheVacuumUltravioletBeamlineDESIRS.Rev.Sci.Instrum.2015,86(12),123108.(73)Poully,J.C.;Schermann,J.P.;Nieuwjaer,N.;Lecomte,F.;Grégoire,G.;Desfrancois,C.;Garcia,G.A.;Nahon,L.;Nandi,D.;̧Poisson,L.;Hochlaf,M.Photoionizationof2-Pyridoneand2-Hydroxypyridine.Phys.Chem.Chem.Phys.2010,12(14),3566−3572.(74)Garcia,G.A.;Nahon,L.;Powis,I.Two-DimensionalChargedParticleImageInversionUsingaPolarBasisFunctionExpansion.Rev.Sci.Instrum.2004,75(11),4989−4996.2393https://dx.doi.org/10.1021/acs.jpclett.1c00258J.Phys.Chem.Lett.2021,12,2385−2393

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
最近更新
更多
大家都在看
近期热门
关闭